CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
Upcoming Research Front
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn


Open Access Article << Previous     |     Next >>   Contents Vol 7(2)

Assessing the effect of marine isoprene and ship emissions on ozone, using modelling and measurements from the South Atlantic Ocean

J. Williams A K, T. Custer A, H. Riede A, R. Sander A, P. Jöckel A, P. Hoor A, A. Pozzer A B, S. Wong-Zehnpfennig A, Z. Hosaynali Beygi A, H. Fischer A, V. Gros C, A. Colomb D, B. Bonsang C, N. Yassaa A E, I. Peeken F G, E. L. Atlas H, C. M. Waluda I, J. A. van Aardenne J, J. Lelieveld A

A Max Planck Institute for Chemistry, J. J. Becherweg 27, D-55128 Mainz, Germany.
B Energy, Environment and Water Research Center of the Cyprus Institute, 1645 Nicosia, Cyprus.
C Laboratoire des Sciences du Climat et de l’Environnement, Commissariat à l’Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), F-91191 Gif sur Yvette, France.
D Laboratoire Interuniversitaire des Systèmes Atmosphériques, Unité Mixte de Recherche (UMR) 7583/CNRS, Université Paris 12, 61 av. Général de Gaulle, F-94010 Créteil, France.
E Present address: Faculty of Chemistry, University of Sciences and Technologie Houari Boumediene, University of Sciences and Technology Houari Boumediene (USTHB), B.P. 32 El-Alia, Bab-Ezzouar, 16111 Algiers, Algeria.
F Alfred Wegener Institute for Polar and Marine Research, Polar Biological Oceanography Am Handelshafen 12, D-27570 Bremerhaven, Germany.
G Present address: Center for Marine Environmental Sciences (MARUM), Leobener Strasse, D-28359 Bremen, Germany.
H Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
I Biological Sciences Division, British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
J European Commission, Institute for Environment and Sustainability, I-21020 Ispra, Italy.
K Corresponding author. Email: williams@mpch-mainz.mpg.de
 Full Text
 PDF (1.5 MB)
 Export Citation

Environmental context. Air over the remote Southern Atlantic Ocean is amongst the cleanest anywhere on the planet. Yet in summer a large-scale natural phytoplankton bloom emits numerous natural reactive compounds into the overlying air. The productive waters also support a large squid fishing fleet, which emits significant amounts of NO and NO2. The combination of these natural and man-made emissions can efficiently produce ozone, an important atmospheric oxidant.

Abstract. Ship-borne measurements have been made in air over the remote South Atlantic and Southern Oceans in January–March 2007. This cruise encountered a large-scale natural phytoplankton bloom emitting reactive hydrocarbons (e.g. isoprene); and a high seas squid fishing fleet emitting NOx (NO and NO2). Using an atmospheric chemistry box model constrained by in-situ measurements, it is shown that enhanced ozone production ensues from such juxtaposed marine biogenic and anthropogenic emissions. The relative impact of shipping and phytoplankton emissions on ozone was examined on a global scale using the EMAC model. Ozone in the marine boundary layer was found to be over ten times more sensitive to NOx emissions from ships, than to marine isoprene in the region south of 45°. Although marine isoprene emissions make little impact on the global ozone budget, co-located ship and phytoplankton emissions may explain the increasing ozone reported for the 40–60°S southern Atlantic region.

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016