CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 9(6)

Unusual Sydney dust storm and its mineralogical and organic characteristics

Rupak Aryal A E , Dheeraj Kandel B , Durga Acharya C , Meng Nan Chong D and Simon Beecham A

A School of Natural and Built Environments, University of South Australia, Mawson Lakes Campus, SA 5095, Australia.
B Melbourne School of Engineering, The University of Melbourne, Parkville, Vic. 3010, Australia.
C CSIRO Materials Science and Engineering, Ian Wark Laboratories, Clayton, Vic. 3168, Australia.
D School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway Selangor DE 46150, Malaysia.
E Corresponding author. Email: rupak.aryal@unisa.edu.au

Environmental Chemistry 9(6) 537-546 http://dx.doi.org/10.1071/EN12131
Submitted: 30 August 2012  Accepted: 30 October 2012   Published: 20 December 2012


 
PDF (1.2 MB) $25
 Export Citation
 Print
  

Environmental context. In 2009, at the end of the longest drought period ever recorded in Australia, a major dust storm blanketed the cities of Sydney and Brisbane for more than 24 h. The source of the dust was inner New South Wales and South Australia, where large scale open-cut mining occurs together with agricultural practices. We report results of extensive mineralogical and chemical analyses of the dust, and discuss their significance in terms of the dust origins and potential human health risks.

Abstract. In a 24-h period from 23 to 24 September 2009, a dust storm passed over Sydney, Australia that produced a red sky and reduced the visibility to a few metres. It was Sydney’s worst dust storm since 1942. During this period, the PM10 (particles measuring 10 μm or less) value jumped from 50 to 11 800 µg m–3. The dust storm was sampled and its mineralogical and organic contents were analysed. Four major particle sizes (0.6, 4.5, 9.3 and 20 µm) were observed in the dust. A multimodal particle distribution indicated a long range of dust transport. Mineralogical analysis showed that the particles were mainly composed of crustal elemental oxides of Al and Si. The ratio of Al/Si was 0.39 and the organic content was 10.6 %, which was found to be enriched with humic-type substances. The high Al/Si ratio (>0.3) indicated that the dust originated from desert land whereas the high organic content indicated that the particles were also derived from eroded agricultural land. A fluorescence spectroscopic study on the organic matter at excitation and emission wavelengths of 245–265 and 330–350 nm indicated that biohazardous substances were unlikely to be present in the dust.

Additional keywords: mineralogical content, organic substances, particle size distribution.


References

[1]  Y. Ben-Ami, I. Koren, Y. Rudich, P. Artaxo, S. Martin, T. M. O. Andreae, Transport of Saharan dust from the Bodele Depression to the Amazon Basin: a case study. Atmos. Chem. Phys. Discuss. 2010, 10, 4345.
CrossRef |

[2]  T. H. Lin, Long-range transport of yellow sand to Taiwan in spring 2000: observed evidence and simulation. Atmos. Environ. 2001, 35, 5873.
CrossRef |

[3]  C. Schultz, Determining the trigger of East Asian dust storms. Eos Trans. AGU 2011, 92, 264.
CrossRef |

[4]  C. A. Pope III, D. W. Dockery, Epidemiology of particle effects, in Air Pollution and Health (Eds S. T. Holgate, J. M. Samet, H. S. Koren, R. L. Maynard),1999, pp. 673–705 (Academic Press: London).

[5]  C. A. Pope, R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, Lung cancer, cardiopulmonary mortality, and longterm exposure to fine particulate air pollution. J. Aa. Med. Assoc. 2002, 287, 1132.
CrossRef |

[6]  J. M. Samet, F. Dominici, F. C. Curriero, I. Coursac, S. L. Zeger, Fine particulate air pollution and mortality in 20 US cities, 1987–1994. New Engl. J. Med. 2000, 343, 1742.
CrossRef |

[7]  Y. C. Lei, C. C. Chan, P. Y. Wang, C. T. Lee, T. J. Cheng, Effects of Asian dust event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in pulmonary hypertensive rats. Environ. Res. 2004, 95, 71.
CrossRef |

[8]  G. Sterk, A. Stein, Mapping wind-blown mass transport by modeling variability in space and time. Soil Sci. Soc. Am. J. 1997, 61, 232.
CrossRef |

[9]  R. Stefanski, M. V. K. Shivakumar, Impacts of sand ad dust storms on agriculture and potential agricultural applications of a SDSWS. IOP Conf. Ser. – Earth Environ. Sci. 2009, 7, 012016.
CrossRef |

[10]  K. Michels, M. V. K. Sivakumar, B. E. Allison, Wind erosion millet production. Agric. For. Meteorol. 1993, 67, 65.
CrossRef |

[11]  K. Michels, D. V. Armbrust, B. E. Allison, M. V. K. Sivakumar, Wind and windblown sand damage to pearl millet. Agron. J. 1995, 87, 620.
CrossRef |

[12]  D. W. Fryreat, Survival and growth of cotton plants damaged by windblown sand. Agron. J. 1971, 63, 638.
CrossRef |

[13]  Y. Shao, M. Raupach, J. F. Leys, A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region. Aust. J. Soil Res. 1996, 34, 309.
CrossRef |

[14]  R. Sabouri, M. Afkhami, A. Zarasvandi, M. Khodadadi, Correlation analysis of dust concentration and water quality indicators. Int. J. Environ. Sci. Dev. 2011, 2, 91.

[15]  S. A. Akrasi, The assessment of suspended sediment inputs to Volta Lake. Lakes Reservoirs: Res. Manage. 2005, 10, 179.
CrossRef |

[16]  H. Breuning-Madsen, G. Lyngsie, T. W. Awadzi, Sediment and nutrient deposition in Lake Volta in Ghana due to Harmattan dust. Catena 2012, 92, 99.
CrossRef |

[17]  R. P. Singh, A. K. Prasad, V. K. Kayetha, M. Kafatos, Enhancement of oceanic parameters associated with dust storms using satellite data. J. Geophys. Res. 2008, 113, C11008.
CrossRef |

[18]  N. Lim, C. I. Munday, G. E. Allison, T. O’Loingsigh, P. De Deckker, N. Tapper, Microbiological and meteorological analysis of two Australian dust storms in April 2009. Sci. Total Environ. 2011, 412–413, 223.
CrossRef |

[19]  Dust readings off the chart 2009 (Department of Environment, Climate Change and Water). Available at http://www.environment.nsw.gov.au/media/DecMedia09092301.htm [verified 19 November 2012].

[20]  P. R. Tozer, The cost of red dawn to the NSW economy, in 56th Conference on Australian Agricultural and Resource Economics Society, Fremantle, WA, 7–10 February 2012 (Australian Agricultural and Resource Economics Society). Available at http://www.aares.org.au/aares/documents/2012ACPapers/Tozer.pdf [verified 19 November 2012].

[21]  National Ambient Air Quality Standards (NAAQS) 2008 (US EPA). Available at http://www.epa.gov/air/criteria.html [verified 19 November 2012].

[22]  L. Paoletti, B. De Bernardis, D. Diociaiuti, Physico-chemical characterization of the inhalable particulate matter (PM10) in an urban area: an analysis of the seasonal trend Sci. Total Environ. 2002, 292, 265.
CrossRef |

[23]  M. A. Hossain, H. Furumai, F. Nakajima, R. K. Aryal, Heavy metals speciation in sediment accumulated within an infiltration facility and evaluation of metal retention properties of underlying soil. Water Sci. Technol. 2007, 56, 81.
CrossRef |

[24]  K. Donaldson, W. MacNee, Potential mechanisms of adverse pulmonary and cardiovascular effects of particulate air pollution (PM10). Int. J. Hyg. Environ. Health 2001, 203, 411.
CrossRef |

[25]  H. Kan, B. Chen, Air pollution and daily mortality in Shanghai: a time-series study. Arch. Environ. Health 2003, 58, 360.

[26]  M. S. Goldberg, R. T. Burnett, J. F. Yale, M. F. Valois, J. R. Brook, Association between ambient air pollution and daily mortality among persons with diabetes and cardiovascular disease. Environ. Res. 2006, 100, 255.
CrossRef |

[27]  B. D. Ostro, S. Hurley, M. J. Lipsett, Air pollution and daily mortality in the Coachella valley, California: a study of PM10 dominated by coarse particles Environ. Res. A 1999, 81, 231.
CrossRef |

[28]  J. H. Seinfeld, Atmospheric Chemistry and Physics of Air Pollution 1986 (Wiley: New York).

[29]  G. Toscano, I. Moret, A. Gambaro, C. Barbante, G. Capodaglio, Distribution and seasonal variability of trace elements in atmospheric particulate in the Venice Lagoon Chemosphere 2011, 85, 1518.
CrossRef |

[30]  Hospital Quarterly: Performance of NSW Public Hospitals, October to December 2010. 2011, vol. 1, issue 3 (Bureau of Health Information: Sydney).

[31]  J. F. Leys, S. K. Heidenreich, C. L. Strong, G. H. McTainsh, S. Quigley, PM10 concentration and mass transport during ‘Red Dawn’ Sydney September 2009. Aeolin Research 2011, 3, 327.
CrossRef |

[32]  V. S. Bashurova, K. P. Koutzenogil, A. Y. Pusep, N. V. Shokhirev, Determination of atmospheric aerosol size distribution functions from screen diffusion battery data: mathematical aspects. J. Aerosol Sci. 1991, 22, 373.
CrossRef |

[33]  A. A. Karanasiou, I. E. Sitaras, P. A. Siskos, K. Eleftheriadis, Size distribution and sources of trace metals and n-alkane in the Athens urban aerosol during summer Atmos. Environ. 2007, 41, 2368.
CrossRef |

[34]  A. Waheed, X. Li, M. Tan, L. Bao, J. Liu, Y. Zhang, G. Zhang, Y. Li, Size distribution and sources of trace metals in ultrafine/fine/coarse airborne particles in the atmosphere of Shanghai. Aerosol Sci. Technol. 2011, 45, 163.
CrossRef |

[35]  R. Kumar, S. Shrivastava, K. M. Kumari, Characteristics of aerosols over suburban and urban site of semiarid region in India: seasonal and spatial variations. Aerosol Air Qual. Res. 2007, 7, 531.

[36]  E. R. Jayaratne, G. R. Johnson, P. McGarry, H. C. Cheung, L. Morawska, Characteristics of airborne ultrafine and coarse particles during the Australian dust storm of 23 September 2009. Atmos. Environ. 2011, 45, 3996.
CrossRef |

[37]  A. W. Knight, G. H. McTainsh, R. W. Simpson, Sediment loads in Australian dust storm: implications for present and past dust processes. Catena 1995, 24, 195.
CrossRef |

[38]  M. A. Box, M. Radhi, G. P. Box, The great Sydney dust event: size resolved chemical composition and comparison. IOP Conf. Series: Earth and Environmental Science 2010, 11, 012015.
CrossRef |

[39]  M. Radhi, M. A. Box, G. P. Box, D. D. Cohen, Size-resolved chemical composition of the September 2009 Sydney dust storm. Air Qual. Climate Change 2010, 44, 25.

[40]  M. Radhi, M. A. Box, R. M. Mitchell, D. D. Cohen, E. Stelcer, M. D. Keywood, Size-resolved mass and chemical properties of dust aerosols from Australia’s Lake Eyre Basin Atmos. Environ. 2010, 44, 3519.
CrossRef |

[41]  T. Kyotani, Characterization of individual silicon-poor particles in atmospheric aerosols by SEM-EDX and application to Kosa particle identification. Spectrosc. Lett. 2005, 38, 365.
CrossRef |

[42]  Z. Shen, X. Li, J. Cao, C. Sandrine, Y. Wang, X. Zhang, Characteristics of clay minerals in Asian dust and their environmental significance. China Particuology 2005, 3, 260.
CrossRef |

[43]  Z. Shi, L. Shao, T. P. Jones, S. Lu, Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China. J. Geophys. Res. 2005, 110, D01303.
CrossRef |

[44]  S. Guerzoni, E. Molinaroli, R. Chester, Saharan dust inputs to the western Mediterranean Sea: Depositional patterns, geochemistry and sedimentological implications Deep Sea Res. Part II Top. Stud. Oceanogr. 1997, 44, 631.
CrossRef |

[45]  A. Blanco, F. D. Tomasi, E. Filippo, D. Manno, M. R. Perrone, A. Serra, A. M. Tafuro, A. Tepore, Characterization of African dust over southern Italy. Atmos. Chem. Phys. Discuss. 2003, 3, 4633.
CrossRef |

[46]  M. Radhi, M. A. Box, G. P. Box, M. D. Keywood, D. D. Cohen, E. Stelcer, R. M. Mitchell, Size-resolved chemical composition of Australian dust aerosol during winter Environ. Chem. 2011, 8, 248.
CrossRef |

[47]  R. Mielenz, N. C. Schieltz, M. E. King, Thermogravimetric analysis of clay and clay-like minerals, in Clays and Clay Minerals: Proceeding of 2nd National Conference on Clay and Clay Minerals, Columbia, MO, 15–17 October 1953 (Eds N. Plummer, A. Swineford) 1953, p. 285 (National Academy of Sciences).

[48]  P. K. Weissenborn, J. G. Dunn, L. J. Warren, Quantitative thermogravimetric analysis of haematite, goethite and kaolinite in Western Australian iron ores. Thermochim. Acta 1994, 239, 147.
CrossRef |

[49]  A. Chaisena, K. Rangsriwatananon, Effects of thermal and acid treatments on some physico-chemical properties of Lampang diatomite. Suranaree J. Sci Technol 2004, 11, 289.

[50]  T. T. Nguyen, L. J. Janik, M. Raupach, Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil studies. Aust. J. Soil Res. 1991, 29, 49.
CrossRef |

[51]  J. Bertaux, F. Frohilch, P. Ildefonse, Multicomponent analysis of FTIR spectra; quantification of amorphous and crystallized mineral phases in synthetic and natural sediments. J. Sediment. Res. 1998, 68, 440.
CrossRef |

[52]  T. Bakharev, Resistance of geopolymer materials to acid attack. Cement Concr. Res. 2005, 35, 658.
CrossRef |

[53]  P. S. Nayak, B. K. Singh, Instrumental characterisation of clay by XRF, XRD and FTIR. Bull. Mater. Sci. 2007, 30, 235.
CrossRef |

[54]  B. J. Saikia, G. Parthasarathy, Fourier transform infrared spectroscopic characterisation of kaolinite from Assam and Meghalaya, Northeastern India. J. Mod. Phys. 2010, 1, 206.
CrossRef |

[55]  J. Zhao, P. Peng, J. Song, S. Ma, G. Sheng, J. Fu, Characterisation of macromolecular organic matter in atmospheric dust from Guangzhou, China Atmos. Environ. 2011, 45, 5612.
CrossRef |

[56]  D. Gondar, R. Lopez, S. Siol, J. M. Antelo, F. Arce, Characterisation and acid-base properties of fulvic and humic acids isolated from two horizons of an ambrotropic peak bog. Geoderma 2005, 126, 367.
CrossRef |

[57]  F. Sakellariadou, Spectroscopic studies of humic acids from surface sediment samples collected across the Agean sea. Medit. Mar. Sci. 2006, 7, 11.

[58]  W. Chen, P. Westerhoff, J. Leenheer, K. Booksh, Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701.
CrossRef |

[59]  R. Aryal, J. Lebegue, S. Vigneswaran, J. Kandasamy, A. Grasmick, Identification and characterisation of biofilm formed on membrane bio-reactor. Separ. Purif. Technol. 2009, 67, 86.
CrossRef |

[60]  Y. L. Pan, P. J. Cobler, S. C. Rhodes, J. Halverson, R. K. Chang, Separating hazardous aerosols from ambient aerosols: role of fluorescence-spectral determination, aerodynamic deflector and pulse aerodynamic localizer (PAL). Proc. SPIE 2005, 5990, 59900Y-1.

[61]  K. Davitt, Y. K. Song, W. R. Patterson, A. V. Nurmikko, Y. L. Pan, R. K. Chang, J. Han, M. Gherasimova, P. Cobler, P. Butler, V. Palermo, Spectroscopic sorting of aerosols by compact sensor employing UV LEDs. Aerosol Sci. Technol. 2006, 40, 1047.
CrossRef |

[62]  A. Alimova, A. Katz, R. Podder, G. Minko, H. Wei, Virus particles monitored by fluorescence spectroscopy: a potential detection assay for macromolecular assembly. Photochem. Photobiol. 2004, 80, 41.
CrossRef |

[63]  A. Shahzad, G. Kohler, M. Knapp, E. Gaubitzer, M. Puchinger, M. Edetsberger, Emerging applications of fluorescence spectroscopy in medical microbiology field. J. Transl. Med. 2009, 7, 99.
CrossRef |

[64]  S. Mori, M. Kato, High-performance aqueous size-exclusion chromatography using diol-bonded porous glass packing materials. Retention behavior of some proteins. J. Liq. Chromatogr. 1987, 10, 3113.
CrossRef |

[65]  V. D’Orazio, N. Senesi, Spectroscopic properties of humic acids isolated from rhizosphere and bulk soil compartments and fractionated by size exclusion chromatography. Soil Biol. Biochem. 2009, 41, 1776.

[66]  S. Nagao, T. Matsunaga, Y. Suzuki, T. Ueno, H. Amano, Characteristics of humic substances in the Kuji River waters as determined by high-performance size exclusion chromatography with fluorescence detection. Water Res. 2003, 37, 4159.
CrossRef |

[67]  D. Niemeyer, A. Becker, The molecular weight distribution of succinoglycan produced by sinorhizobium meliloti is influenced by specific tyrosine phosphorylation and ATPase activity of the cytoplasmic domain of the exop protein. J. Bacteriol. 2001, 183, 5163.
CrossRef |

[68]  N. Azema, M. F. Pouet, C. Berho, O. Thomas, Wastewater suspended solids study by optical methods. Colloid Surf. A. 2002, 204, 131.
CrossRef |

[69]  J. R. Lead, K. J. Wilkinson, Environmental Colloids and Particles: Behaviour, Structure and Characterisation (Eds K. J. Wilkinson, J. R. Lead) 2006, vol. 10 (Wiley: Chichester, UK).


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014