CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
Upcoming Research Front
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn


Article << Previous     |     Next >>   Contents Vol 11(3)

Composites of nanostructured calcium silicate hydrate with superparamagnetic particles and their use in the uptake of copper from solution

Mathew J. Cairns A, Giancarlo M. Barassi A and Thomas Borrmann A B C

A School of Chemical and Physical Sciences, Victoria University, PO Box 600, 6140 Wellington, New Zealand.
B Present Address: Othbergstrasse 10, D-37632 Eschershausen, Germany.
C Corresponding author. Email: aoc@gmx.li

Environmental Chemistry 11(3) 301-308 http://dx.doi.org/10.1071/EN13183
Submitted: 11 October 2013  Accepted: 1 February 2014   Published: 5 June 2014

PDF (942 KB) $25
 Supplementary Material
 Export Citation

Environmental context. Mining operations release dissolved metals in waste streams which can present an environmental hazard as well as an economic loss. Large volumes of waste water and low levels of metals mean that highly effective materials such as nanoparticles or nanostructures need to be employed to remove the dissolved metals from the stream. The challenge in using nanotechnology lies in the recovery of the particles, as filtration proves ineffective; this article discusses use of magnetic composites as a potential solution to this challenge.

Abstract. Composites of magnetite and maghemite with a nanostructured calcium silicate hydrate are generated and used in the sorption of copper from solution. The superparamagnetic components allow use of high gradient separation thereby circumventing the time-consuming recovery of the silicate by filtration. The sorption capacity of the composites is comparable to that of the pure silicate. The ideal ratio of iron oxide to calcium silicate hydrate is identified to be 10 wt % of magnetite or maghemite.

Additional keywords: copper sorption, high gradient magnetic separation, sorption, superparamagnetic composite.


[1]  D. C. Southam, T. W. Lewis, A. J. McFarlane, T. Borrmann, J. H. Johnston, Calcium–phosphorus interactions at a nanostructured silicate surface. J. Colloid Interface Sci. 2008, 319, 489.
CrossRef | CAS | PubMed |

[2]  M. J. Cairns, T. Borrmann, J. H. Johnston, W. Hoell, A study of the uptake of copper ions by nanostructured calcium silicate. Micropor. Mesopor. Mater. 2006, 95, 126.
CrossRef | CAS |

[3]  T. Borrmann, M. J. Cairns, B. G. Anderson, W. Hoell, J. H. Johnston, Nanostructured calcium silicate as sorbent in a study of artificial mining waste. Int. J. Environment Waste Manag. 2011, 8, 383.
CrossRef | CAS |

[4]  D. Feng, C. Aldrich, H. Tan, Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates. Hydrometallurgy 2000, 56, 359.
CrossRef | CAS |

[5]  J. Svoboda, A realistic description of the process of high-gradient magnetic separation. Miner. Eng. 2001, 14, 1493.
CrossRef | CAS |

[6]  J. H. P. Watson, Magnetic filtration. J. Appl. Phys. 1973, 44, 4209.
CrossRef | CAS |

[7]  G. D. Moeser, K. A. Roach, W. H. Green, T. A. Hatton, P. E. Laibinis, High-gradient magnetic separation of coated magnetic nanoparticles. AIChE J. 2004, 50, 2835.
CrossRef | CAS |

[8]  J. J. Hubbuch, O. R. T. Thomas, High-gradient magnetic affinity separation of trypsin from porcine pancreatin. Biotechnol. Bioeng. 2002, 79, 301.
CrossRef | CAS | PubMed |

[9]  M. Franzreb, C. Reichert, United States Patent 7,506,765 2009.

[10]  A. Meyer, D. B. Hansen, C. S. G. Gomes, T. J. Hobley, O. R. T. Thomas, M. Franzreb, Demonstration of a strategy for product purification by high-gradient magnetic fishing: recovery of superoxide dismutase from unconditioned whey. Biotechnol. Prog. 2005, 21, 244.
CrossRef | CAS | PubMed |

[11]  J. G. Rayner, T. J. Napier-Munn, The mechanism of magnetics capture in the wet drum magnetic separator. Miner. Eng. 2000, 13, 277.
CrossRef | CAS |

[12]  A. J. Priestley, Australian Patent 553 423 1982.

[13]  S. Pavlova, I. Dobrevsky, Modified Sirofloc process for natural water treatment. Desalination 2005, 173, 55.
CrossRef | CAS |

[14]  M. Franzreb, P. Kampeis, M. Franz, S. H. Eberle, Use of magnet technology for phosphate elimination from municipal sewage. Acta Hydrochim. Hydrobiol. 1998, 26, 213.
CrossRef | CAS |

[15]  H.-N. Chou, C. A. Naleway, Extraction-spectrophotometric determination of trace phosphorus in chromium-bearing materials which may contain silica, niobium, tantalum, zirconium, titanium, and hafnium. Anal. Chem. 1984, 56, 1737.
CrossRef | CAS |

[16]  N. Athanasopoulos, Flame Methods Manual for Atomic Absorption 1989 (GBC Scientific Equipment Pty Ltd: Melbourne).

[17]  I. I. Flowsorb, 2300 Instruction Manual for Determining Single Point and Multipoint Surface Area, Total Pore Volume, and Pore Area and Volume Distribution 1990 (Micromeritics Instrument Corporation: Norcross, GA, USA).

[18]  M. Wojdyr, Fityk: a general-purpose peak fitting program. J. Appl. Cryst. 2010, 43, 1126.
CrossRef | CAS |

[19]  A. J. McFarlane, The Synthesis and Characterisation of Nanostructured Calcium Silicate 2008, Ph.D. thesis, Victoria University of Wellington.

[20]  P. Berger, N. B. Adelman, K. J. Beckman, D. J. Campbell, A. B. Ellis, G. C. Lisensky, Preparation and properties of an aqueous ferrofluid. J. Chem. Educ. 1999, 76, 943.
CrossRef | CAS |

[21]  R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1981, 17, 1247.
CrossRef |

[22]  T. Borrmann, J. H. Johnston, A. J. McFarlane, K. J. D. MacKenzie, A. Nukui, Structural elucidation of synthetic calcium silicates. Powder Diffraction 2008, 23, 204.
CrossRef | CAS |

[23]  D. J. Dunlop, Superparamagnetic and single-domain threshold sizes in magnetite. J. Geophys. Res. 1973, 78, 1780.
CrossRef |

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016