CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Call for Papers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |              Online Early    

Release of arsenite, arsenate and methyl-arsenic species from streambed sediment affected by acid mine drainage: a microcosm study

Marina Héry A D , Corinne Casiot A C D , Eléonore Resongles A , Zoe Gallice A , Odile Bruneel A B , Angélique Desoeuvre A and Sophie Delpoux A

A Laboratoire HydroSciences Montpellier, HSM, UMR 5569 (IRD, CNRS, Universités Montpellier 1 et 2), Université Montpellier 2, Place E. Bataillon, CC MSE, F-34095 Montpellier, France.
B Laboratoire Mixte International Biotechnologie Microbienne et Végétale; Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Avenue Ibn Batouta BP1014, Université Mohammed V. Rabat, Morocco.
C Corresponding author: casiot@msem.univ-montp2.fr
D Both authors contributed equally to this work.

Environmental Chemistry - http://dx.doi.org/10.1071/EN13225
Submitted: 10 December 2013  Accepted: 5 May 2014   Published online: 14 August 2014


 
PDF (818 KB) $25
 Supplementary Material
 Export Citation
 Print
  

Environmental context. Arsenic-rich waters generated from the oxidation of mining wastes are responsible for the severe contamination of river waters and sediments located downstream from mining sites. Under certain environmental conditions, the affected riverbed sediments may represent a reservoir for arsenic from which this toxic element may be released into water, mainly as a consequence of microbial activity.

Abstract. The (bio-)geochemical processes driving As mobilisation from streambed sediments affected by acid mine drainage (AMD) were investigated, and the structure of the bacterial community associated with the sediments was characterised. Microcosm experiments were set up to determine the effect of oxygen, temperature (4 and 20 °C) and microbial activity on As mobilisation from contrasting sediments collected during high- (November 2011) and low- (March 2012) flow conditions in the Amous River, that received AMD. Distinct bacterial communities thrived in the two sediments, dominated by Rhodobacter spp., Polaromonas spp. and Sphingomonads. These communities included only few bacteria known for their capacity to interact directly with As, whereas biogeochemical processes appeared to control As cycling. Major As mobilisation occurred in the AsIII form at 20 °C in anoxic conditions, from both November and March sediments, as the result of successive biotic reductive dissolution of Mn- and Fe-oxyhydroxides. The later process may be driven by Mn- and Fe-reducing bacteria such as Geobacter spp. and possibly occurred in combination with microbially mediated AsV reduction. The involvement of other bacteria in these redox processes is not excluded. Biomethylation occurred only with the sediments collected at low-flow during oxic and anoxic conditions, although no bacteria characterised so far for its ability to methylate As was identified. Finally, sorption equilibrium of AsV onto the sediment appeared to be the main process controlling AsV concentration in oxic conditions. Comparison with field data shows that the later process, besides biomethylation, may be of relevance to the As fate in AMD-affected streams.

Additional keywords: bacterial communities, biomethylation.


References

[1]  D. B. Johnson, K. B. Hallberg, Acid mine drainage remediation options: a review. Sci. Total Environ. 2005, 338, 3.
CrossRef | CAS | PubMed |

[2]  B. A. Butler, Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments. Water Res. 2009, 43, 1392.
CrossRef | CAS | PubMed |

[3]  B. A. Butler, Effect of imposed anaerobic conditions on metals release from acid-mine drainage contaminated streambed sediments. Water Res. 2011, 45, 328.
CrossRef | CAS | PubMed |

[4]  J. M. Park, J. S. Lee, J. U. Lee, H. T. Chon, M. C. Jung, Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. J. Geochem. Explor. 2006, 88, 134.
CrossRef | CAS |

[5]  K. H. Nealson, Sediment bacteria: who’s there, what are they doing, and what's new? Annu. Rev. Earth Planet. Sci. 1997, 25, 403.
CrossRef | CAS | PubMed |

[6]  C. Lors, C. Tiffreau, A. Laboudigue, Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments. Chemosphere 2004, 56, 619.
CrossRef | CAS | PubMed |

[7]  P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
CrossRef | CAS |

[8]  B. K. Mandal, K. T. Suzuki, Arsenic round the world: a review. Talanta 2002, 58, 201.
CrossRef | CAS | PubMed |

[9]  C. Casiot, S. Lebrun, G. Morin, O. Bruneel, J. C. Personné, F. Elbaz-Poulichet, Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci. Total Environ. 2005, 347, 122.
CrossRef | CAS | PubMed |

[10]  H. Cheng, Y. Hub, J. Luoc, B. Xua, J. Zhao, Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J. Hazard. Mater. 2009, 165, 13.
CrossRef | CAS | PubMed |

[11]  T. Z. Guo, R. D. DeLaune, W. H. Patrick, The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediment. Environ. Int. 1997, 23, 305.
CrossRef | CAS |

[12]  H. W. Langner, W. P. Inskeep, Microbial reduction of arsenate in the presence of ferrihydrite. Environ. Sci. Technol. 2000, 34, 3131.
CrossRef | CAS |

[13]  Y. Takahashi, R. Minamikawa, K. H. Hattori, K. Kurishima, N. Kihou, K. Yuita, Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol. 2004, 38, 1038.
CrossRef | CAS | PubMed |

[14]  M. Herbel, S. Fendorf, Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chem. Geol. 2006, 228, 16.
CrossRef | CAS |

[15]  J. Routh, A. Bhattacharya, A. Saraswathy, G. Jacks, P. Bhattacharya, Arsenic remobilization from sediments contaminated with mine tailings near the Adak mine in Vasterbotten district (northern Sweden). J. Geochem. Explor. 2007, 92, 43.
CrossRef | CAS |

[16]  D. A. Rubinos, L. Iglesias, F. Diaz-Fierros, M. T. Barral, Interacting effect of pH, phosphate and time on the release of arsenic from polluted river sediments (Anllóns River, Spain). Aquat. Geochem. 2011, 17, 281.
CrossRef | CAS |

[17]  S. Dixit, J. G. Hering, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182.
CrossRef | CAS | PubMed |

[18]  K. J. Tufano, C. Reyes, C. W. Saltikov, S. Fendorf, Reductive processes controlling arsenic retention: revealing the relative importance of iron and arsenic reduction. Environ. Sci. Technol. 2008, 42, 8283.
CrossRef | CAS | PubMed |

[19]  S. Silver, K. Budd, K. M. Leahy, W. V. Shaw, D. Hammond, R. P. Novick, G. R. Willsky, M. H. Malamy, H. Rosenberg, Inducible plasmid determined resistance to arsenate, arsenite, and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 1981, 146, 983.
| CAS | PubMed |

[20]  R. S. Oremland, J. F. Stolz, The ecology of arsenic. Science 2003, 300, 939.
CrossRef | CAS | PubMed |

[21]  M. Azizur Rahman, H. Hasegawa, Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation. Appl. Geochem. 2012, 27, 304.
CrossRef | CAS |

[22]  X. X. Yin, J. Chen, J. Qin, G.-X. Sun, B. P. Rosen, Y.-G. Zhu, Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol. 2011, 156, 1631.
CrossRef | CAS | PubMed |

[23]  C. Casiot, M. Egal, O. Bruneel, C. Bancon-Montigny, M. A. Cordier, E. Gomez, C. Aliaume, F. Elbaz-Poulichet, Hydrological and geochemical controls on metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous river, France); preliminary assessment of impacts on fish (Leuciscus cephalus). Appl. Geochem. 2009, 24, 787.
CrossRef | CAS |

[24]  M. Leblanc, B. Achard, D. Ben Othman, J. M. Luck, Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites). Appl. Geochem. 1996, 11, 541.
CrossRef | CAS |

[25]  C. Casiot, G. Morin, F. Juillot, O. Bruneel, J. C. Personné, M. Leblanc, K. Duquesne, V. Bonnefoy, F. Elbaz-Poulichet, Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès Creek, France). Water Res. 2003, 37, 2929.
CrossRef | CAS | PubMed |

[26]  W. G. Weisburg, S. M. Barns, D. A. Pelletier, D. J. Lane, 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697.
| CAS | PubMed |

[27]  S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403.
CrossRef | CAS | PubMed |

[28]  R. C. Edgar, B. J. Haas, J. C. Clemente, C. Quince, R. Knight, UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194.
CrossRef | CAS | PubMed |

[29]  P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, J. W. Sahl, B. Stres, G. G. Thallinger, D. J. Van Horn, C. F. Weber, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537.
CrossRef | CAS | PubMed |

[30]  M. Cardinale, L. Brusetti, P. Quatrini, S. Borin, A. M. Puglia, A. Rizzi, A. Zanardini, C. Sorlini, C. Corselli, D. Daffonchio, Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl. Environ. Microbiol. 2004, 70, 6147.
CrossRef | CAS | PubMed |

[31]  D. K. Nordstrom, Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl. Geochem. 2011, 26, 1777.
CrossRef | CAS |

[32]  A. Adra, G. Morin, G. Ona-Nguema, N. Menguy, F. Maillot, C. Casiot, O. Bruneel, S. Lebrun, F. Juillot, J. Brest, Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage. Environ. Sci. Technol. 2013, 47, 12 784.
CrossRef | CAS |

[33]  G. L. Rupp, V. D. Adams, Calcium Carbonate Precipitation as Influenced by Stream Primary Production. Paper 116 1981 (Utah State University, Utah Water Research Laboratory: Logan, UT). Available at http://digitalcommons.usu.edu/water_rep/116 [Verified 20 June 2014].

[34]  G. Lee, J. M. Bigham, G. Faure, Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl. Geochem. 2002, 17, 569.
CrossRef | CAS |

[35]  K. Koffi, M. Leblanc, H. Jourde, C. Casiot, S. Pistre, P. Gouze, F. Elbaz-Poulichet, Reverse oxidation zoning at a mine tailings stock generating arsenic-rich acid waters (Carnoulès, France). Mine Water Environ. 2003, 22, 7.
CrossRef | CAS |

[36]  M. P. Asta, C. Ayora, G. Román-Ross, J. Cama, P. Acero, A. G. Gault, J. M. Charnock, F. Bardelli, Natural attenuation of arsenic in the Tinto Santa Rosa acid stream (Iberian Pyritic Belt, SW Spain): the role of iron precipitates. Chem. Geol. 2010, 271, 1.
CrossRef | CAS |

[37]  J. Majzlan, B. Lalinská, M. Chovan, L. Jurkovič, S. Milovská, J. Gőttlicher, The formation, structure, and ageing of As-rich hydrous ferric oxide at the abandoned Sb deposit Pezinok (Slovakia). Geochim. Cosmochim. Acta 2007, 71, 4206.
CrossRef | CAS |

[38]  P. Byrne, P. J. Wood, I. Reid, The impairment of river systems by metal mine contamination: a review including remediation options. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2017.
CrossRef | CAS |

[39]  L. Giotta, A. Agostiano, F. Italiano, F. Milano, M. Trotta, Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 2006, 62, 1490.
CrossRef | CAS | PubMed |

[40]  B. B. Nepple, J. Kessi, R. Bachofen, Chromate reduction by Rhodobacter sphaeroides. J. Ind. Microbiol. Biotechnol. 2000, 25, 198.
CrossRef | CAS |

[41]  J. M. Yagi, D. Sims, T. Brettin, D. Bruce, E. L. Madsen, The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ. Microbiol. 2009, 11, 2253.
CrossRef | CAS | PubMed |

[42]  L. Haller, M. Tonoll, J. Zopfi, R. Peduzzi, W. Wildi, J. Poté, Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland). Water Res. 2011, 45, 1213.
CrossRef | CAS | PubMed |

[43]  T. R. Miller, A. L. Delcher, S. L. Salzberg, E. Saunders, J. C. Detter, R. U. Halden, Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1. J. Bacteriol. 2010, 192, 6101.
CrossRef | CAS | PubMed |

[44]  V. A. Jackson, A. N. Paulse, J. P. Odendaal, S. Khan, W. Khan, Identification of metal tolerant organisms isolated from the Plankenburg River, Western Cape, South Africa. Water S.A. 2012, 38, 29.
CrossRef | CAS |

[45]  M. E. Farias, S. Revale, E. Mancini, O. Ordonez, A. Turjanski, N. Cortez, M. P. Vazquez, Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean puna. J. Bacteriol. 2011, 193, 3686.
CrossRef | CAS | PubMed |

[46]  G. Lear, B. Song, A. G. Gault, D. A. Polya, J. R. Lloyd, Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl. Environ. Microbiol. 2007, 73, 1041.
CrossRef | CAS | PubMed |

[47]  D. C. White, S. D. Suttont, D. B. Ringelberg, The genus Sphingomonas: physiology and ecology. Curr. Opin. Biotechnol. 1996, 7, 301.
CrossRef | CAS | PubMed |

[48]  Z. J. Zhou, H. Q. Yin, Y. Liu, M. Xie, G. Z. Qiu, X. D. Liu, Diversity of microbial community at acid mine drainages from Dachang metals-rich mine, China. Trans. Nonferrous Met. Soc. China 2010, 20, 1097.
CrossRef | CAS |

[49]  D. R. Nicholas, S. Ramamoorthy, V. Palace, S. Spring, J. N. Moore, R. F. Rosenzweig, Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Biodegradation 2003, 14, 123.
CrossRef | CAS | PubMed |

[50]  W. M. Mok, C. M. Wai, Distribution and mobilization of arsenic and antimony species in the Coeur d’Alene river, Idaho. Environ. Sci. Technol. 1990, 24, 102.
CrossRef | CAS |

[51]  F. S. Islam, A. G. Gault, C. Boothman, D. A. Polya, J. M. Charnock, D. Chatterjee, J. R. Lloyd, Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 2004, 430, 68.
CrossRef | CAS | PubMed |

[52]  H. A. L. Rowland, R. L. Pederick, D. A. Polya, R. D. Pancost, B. E. Van Dongen, A. G. Gault, D. J. Vaughan, C. Bryant, B. Anderson, J. R. Lloyd, The control of organic matter on microbially mediated iron reduction and arsenic release in shallow alluvial aquifers, Cambodia. Geobiology 2007, 5, 281.
CrossRef | CAS |

[53]  M. Héry, B. E. van Dongen, F. Gill, D. Mondal, D. J. Vaughan, R. D. Pancost, D. A. Polya, J. R. Lloyd, Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology 2010, 8, 155.
CrossRef | PubMed |

[54]  L. Giloteaux, D. E. Holmes, K. H. Williams, K. C. Wrighton, M. J. Wilkins, A. P. Montgomery, J. A. Smith, R. Orellana, C. A. Thompson, T. J. Roper, P. E. Long, D. R. Lovley, Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation. ISME J. 2013, 7, 370.
CrossRef | CAS | PubMed |

[55]  Y. Masue-Slowey, R. H. Loeppert, S. Fendorf, Alteration of ferrihydrite reductive dissolution and transformation by adsorbed As and structural Al: implications for As retention. Geochim. Cosmochim. Acta 2011, 75, 870.
CrossRef | CAS |

[56]  J. R. Lloyd, A. G. Gault, M. Héry, J. D. MacRae, Microbial transformations of arsenic in the subsurface. In Environmental Microbe-Metal Interactions II (Eds J. F. Stolz, R. S, Oremland), 2011, pp. 77–90 (ASM Press: Washington, DC).

[57]  S. C. Ying, Y. Masue-Slowey, B. D. Kocar, S. D. Griffis, S. Webb, M. A. Marcus, C. A. Francis, S. Fendorf, Distributed microbially and chemically mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates. Geochim. Cosmochim. Acta 2013, 104, 29.
CrossRef | CAS |

[58]  K. Bosecker, Bioleaching: metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591.
CrossRef | CAS |

[59]  R. N. vanden Hoven, J. M. Santini, Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim. Biophys. Acta 2004, 1656, 148.
CrossRef | CAS | PubMed |

[60]  R. Bentley, T. G. Chasteen, Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol. Mol. Biol. Rev. 2002, 66, 250.
CrossRef | CAS | PubMed |

[61]  J. Meyer, K. Michalke, T. Kouril, R. Hensel, Volatilisation of metals and metalloids: an inherent feature of methanoarchaea? Syst. Appl. Microbiol. 2008, 31, 81.
CrossRef | CAS | PubMed |

[62]  J. Ye, C. Rensing, B. P. Rosen, Y.-G. Zhu, Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci. 2012, 17, 155.
CrossRef | CAS | PubMed |

[63]  A. Mestrot, J. Feldmann, E. M. Krupp, M. S. Hossain, G. Roman-Ross, A. A. Meharg, Field fluxes and speciation of arsines emanating from soils. Environ. Sci. Technol. 2011, 45, 1798.
CrossRef | CAS | PubMed |

[64]  Y. Jia, H. Huang, M. Zhong, F.-H. Wang, L.-M. Zhang, Y.-G. Zhu, Microbial arsenic methylation in soil and rice rhizosphere. Environ. Sci. Technol. 2013, 47, 3141.
| CAS | PubMed |

[65]  S. A. Nagorski, J. N. Moore, Arsenic mobilization in the hyporheic zone of a contaminated stream. Water Resour. Res. 1999, 35, 3441.
CrossRef | CAS |

[66]  L. Duester, J. P. M. Vink, A. V. Hirner, Methylantimony and –arsenic Species in sediment pore water tested with the sediment or fauna incubation experiment. Environ. Sci. Technol. 2008, 42, 5866.
CrossRef | CAS | PubMed |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014