CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Boards
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Call for Papers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube


Article << Previous     |     Next >>        Online Early    

Improved groundwater geogenic arsenic hazard map for Cambodia

C. Sovann A B and D. A. Polya A C

A School of Earth, Atmospheric and Environmental Sciences & Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Manchester, M13 9PL, UK.
B Now at Department of Environmental Science, Royal University of Phnom Penh, Phnom Penh, Cambodia.
C Corresponding author. Email: david.polya@manchester.ac.uk

Environmental Chemistry - http://dx.doi.org/10.1071/EN14006
Submitted: 9 January 2014  Accepted: 25 May 2014   Published online: 15 September 2014

PDF (1.4 MB) $25
 Export Citation

Environmental context. Groundwater arsenic is a major environmental risk to human health in many regions of the world, including Cambodia where groundwater is often used for drinking water. We present data for hitherto poorly sampled regions in Cambodia, notably around Tonle Sap and in the coastal provinces, and provide a geo-statistical model of arsenic in shallow groundwater for the whole country.

Abstract. Arsenic is a known environmental chemical hazard in shallow groundwaters of Cambodia and is increasingly recognised as a major problem for public health. Notwithstanding this, accurate arsenic data are not available for many wells in potentially arsenic-prone areas, particularly around the Tonle Sap Great Lake (TSL) and in the coastal provinces (CP). We present here new data for shallow groundwater (16–120-m depth) arsenic in the TSL and CP regions as well as an improved regression-kriging (RK) based groundwater arsenic hazard map for the whole country. High arsenic levels (up to 100 μg L–1) were found in shallow groundwaters from the TSL and CP regions of Cambodia, but despite strong compositional similarities (near neutral, reducing, Na-Mg-Ca-HCO3 dominated) with high arsenic level groundwaters near the Mekong and Bassac rivers, groundwater arsenic levels in both the TSL and CP regions were most commonly low (interquartile range 0.09–1.2 μg L–1). The RK geostatistical model was highly successful, accounting for over 50 % of the observed variation in arsenic concentrations countrywide and represents a potentially useful tool for policymakers and those responsible and with the interest and authority to prepare arsenic mitigation and safe water supply plans.

Additional keywords: geostatistics, regression kriging.


[1]  A. H. Smith, E. O. Lingas, M. Rahman, Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull. World Health Organ. 2000, 78, 1093.
| CAS | PubMed |

[2]  P. L. Smedley, D. G. Kinniburgh, A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517.
CrossRef | CAS |

[3]  L. Charlet, D. A. Polya, Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements 2006, 2, 91.
CrossRef |

[4]  M. Amini, K. C. Abbaspour, M. Berg, L. Winkel, S. J. Hug, E. Hoehn, H. Yang, C. A. Johnson, Statistical modeling of global geogenic arsenic contamination in groundwater. Environ. Sci. Technol. 2008, 42, 3669.
CrossRef | CAS | PubMed |

[5]  A. Mukherjee, P. Bhattacharya, K. Savage, A. Foster, J. Bundschuh, Distribution of geogenic arsenic in hydrologic systems: controls and challenges. J. Contam. Hydrol. 2008, 99, 1.
CrossRef | CAS | PubMed |

[6]  P. Ravenscroft, H. Brammer, K. Richards, Arsenic Pollution: A Global Synthesis 2009 (Wiley-Blackwell: Chichester, UK).

[7]  D. A. Polya, D. Mondal, A. K. Giri, Quantification of deaths and DALYs arising from chronic exposure to arsenic in groundwaters utilized for drinking, cooking and irrigation of food crops, in Handbook of Disease Burdens and Quality of Life Measures (Eds. V. R. Preedy, R. R. Watson) 2010, pp. 702–728 (Springer: New York).

[8]  R. P. Schwarzenbach, T. Egli, T. B. Hofstetter, U. von Gunten, B. Wehrli, Global water pollution and human health. Annu. Rev. Environ. Resour. 2010, 35, 109.
CrossRef |

[9]  D. J. Vaughan, D. A. Polya, Mineralogy matters: arsenic – the great poisoner revisited. Elements 2013, 9, 315.

[10]  R. Nickson, J. McArthur, W. Burgess, K. M. Ahmed, P. Ravenscroft, M. Rahmann, Arsenic poisoning of Bangladesh groundwater. Nature 1998, 395, 338.
CrossRef | CAS | PubMed |

[11]  M. Berg, H. C. Tran, T. C. Nguyen, H. V. Pham, R. Schertenleib, W. Giger, Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ. Sci. Technol. 2001, 35, 2621.
CrossRef | CAS | PubMed |

[12]  R. R. Shrestha, M. P. Shrestha, N. P. Upadhyay, R. Pradhan, R. Khadka, A. Maskey, M. Maharjan, S. Tuladhar, B. M. Dahal, K. Shrestha, Groundwater arsenic contamination, its health impact and mitigation program in Nepal. J. Environ. Sci. Health – A. Tox. Hazard. Subst. Environ. Eng. 2003, 38, 185.
CrossRef | PubMed |

[13]  D. A. Polya, M. Berg, A. G. Gault, Y. Takahashi, Arsenic in groundwaters of South-East Asia: with emphasis on Cambodia and Vietnam. Appl. Geochem. 2008, 23, 2968.
CrossRef | CAS |

[14]  D. A. Polya, A. G. Gault, N. J. Bourne, P. R. Lythgoe, D. A. Cooke, Coupled HPLC-ICP-MS analysis indicates highly hazardous concentrations of dissolved arsenic species are present in Cambodian wellwaters, in Plasma Source Mass Spectrometry: Applications and Emerging Technologies (Eds J. G. Holland, S. D. Tanner) 2003, pp. 127–140 (Royal Society of Chemistry: Cambridge, UK).

[15]  D. A. Polya, H. A. L. Rowland, A. G. Gault, N. H. Diebe, J. C. Jones, D. A. Cooke, Geochemistry of arsenic-rich shallow groundwaters in Cambodia. Geochim. Cosmochim. Acta 2004, 68, A520.

[16]  D. A. Polya, A. G. Gault, N. Diebe, P. Feldman, J. W. Rosenboom, E. Gilligan, D. Fredericks, A. H. Milton, M. Sampson, H. A. L. Rowland, P. R. Lythgoe, J. C. Jones, C. Middleton, D. A. Cooke, Arsenic hazard in shallow Cambodian groundwaters. Mineral. Mag. 2005, 69, 807.
CrossRef | CAS |

[17]  P. R. Feldman, J. W. Rosenboom, M. Saray, P. Navuth, C. Samnang, S. Iddings, Assessment of the chemical quality of drinking water in Cambodia. J. Water Health 2007, 5, 101.
CrossRef | CAS | PubMed |

[18]  M. Berg, C. Stengel, P. T. K. Trang, P. H. Viet, M. L. Sampson, M. Leng, S. Samreth, D. Fredericks, Magnitude of arsenic pollution in the Mekong and Red river deltas – Cambodia and Vietnam. Sci. Total Environ. 2007, 372, 413.
CrossRef | CAS | PubMed |

[19]  H. A. L. Rowland, A. G. Gault, P. R. Lythgoe, D. A. Polya, Geochemistry of aquifer sediments and arsenic-rich groundwaters in Cambodia. Appl. Geochem. 2008, 23, 3029.
CrossRef | CAS |

[20]  J. Buschmann, M. Berg, C. Stengel, L. Winkel, M. L. Sampson, P. T. K. Trang, P. H. Viet, Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population. Environ. Int. 2008, 34, 756.
CrossRef | CAS | PubMed |

[21]  D. A. Polya, M. L. Polizzotto, S. Fendorf, L. Rodríguez Lado, A. Hegan, M. Lawson, H. A. L. Rowland, A. K. Giri, D. Mondal, C. Sovann, W. M. M. Al Lawati, B. E. van Dongen, P. Gilbert, A. Shantz, Arsenic in groundwaters of Cambodia, in Water Resources and Development in Southeast Asia (Eds K. Irvine, T. Murphy, V. Vanchan, S. Vermette) 2010, pp. 31–56 (Pearson Learning Solutions: New York).

[22]  R. Kubota, T. Kunito, T. Agusa, J. Fujihara, I. Monirith, H. Iwata, A. Subramanian, T. Seang Tana, S. Tanabe, Urinary 8-hydroxy-2′-deoxyguanosine in inhabitants chronically exposed to arsenic in groundwater in Cambodia. J. Environ. Monit. 2006, 8, 293.
CrossRef | CAS | PubMed |

[23]  A. G. Gault, H. A. L. Rowland, J. M. Charnock, R. A. Wogelius, I. Gomez-Morilla, S. Vong, M. Leng, S. Samreth, M. L. Sampson, D. A. Polya, Arsenic in hair and nails of individuals exposed to arsenic-rich groundwaters in Kandal Province, Cambodia. Sci. Total Environ. 2008, 393, 168.
CrossRef | CAS | PubMed |

[24]  M. L. Sampson, B. Bostick, H. Chiew, J. M. Hagan, A. Shantz, Arsenicosis in Cambodia: case studies and policy response. Appl. Geochem. 2008, 23, 2977.
CrossRef | CAS |

[25]  D. N. G. Mazumder, K. K. Majumdar, S. C. Santra, H. Kol, C. Vicheth, Occurrence of arsenicosis in a rural village of Cambodia. J. Environ. Sci. Health – A. Tox. Hazard. Subst. Environ. Eng. 2009, 44, 480.
CrossRef | CAS |

[26]  T. T. G. Luu, S. Sthiannopkao, K. W. Kim, Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal province of Cambodia. Environ. Int. 2009, 35, 455.
CrossRef | CAS |

[27]  D. Fredericks, Ministry of Rural Development Arsenic Secretariat, Situation analysis: arsenic contamination in groundwater in Cambodia 2004 (UNICEF: Phnom Penh, Cambodia).

[28]  L. Rodríguez Lado, D. Polya, L. Winkel, M. Berg, A. Hegan, Modelling arsenic hazard in Cambodia: a geostatistical approach using ancillary data. Appl. Geochem. 2008, 23, 3010.
CrossRef | CAS |

[29]  L. Winkel, M. Berg, M. Amini, S. J. Hug, A. C. Johnson, Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat. Geosci. 2008, 1, 536.
CrossRef | CAS |

[30]  M. L. Polizzotto, B. D. Kocar, S. G. Benner, M. Sampson, S. Fendorf, Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 2008, 454, 505.
CrossRef | CAS | PubMed |

[31]  M. Lawson, D. A. Polya, A. J. Boyce, C. Bryant, D. Mondal, A. Shantz, C. J. Ballentine, Pond derived organic carbon driving changes in arsenic hazard found in Asian groundwaters. Environ. Sci. Technol. 2013, 47, 7085.
| CAS | PubMed |

[32]  MRC UNEP, Mekong River Basin Diagnostic Study 1997 (Mekong River Commission: Bangkok).

[33]  MRC, People and the Environment Atlas of the Lower Mekong Basin 2003 (Mekong River Commission: Bangkok).

[34]  J. N. Miller, J. C. Miller, Statistics and Chemometrics for Analytical Chemistry, 5th edn 2005 (Pearson Education Limited: Harlow, UK).

[35]  IUSS Working Group WRB, World reference base for soil resources 2006. World Soil Resources Reports number 103 2006 (Food and Agriculture Organization of the United Nations: Rome).

[36]  The Atlas of Cambodia: National Poverty and Environment Maps 2006 (Save Cambodia's Wildlife: Phnom Penh, Cambodia).

[37]  General population census of Cambodia 2008: National Report on Final Census Results 2009 (National Institute of Statistics: Phnom Penh, Cambodia).

[38]  Cambodia Inter-Censal Population Survey 2013 (National Institute of Statistics: Phnom Penh, Cambodia). Available at http://countryoffice.unfpa.org/cambodia/drive/CIPS_Report_English_Final.pdf [Verified 21 July 2014].

[39]  C. F. Harvey, C. H. Swartz, A. B. M. Badruzzaman, N. Keon-Blute, W. Yu, M. A. Ali, J. Jay, R. Beckie, V. Niedan, D. Brabander, P. M. Oates, K. N. Ashfaque, S. Islam, H. F. Hemond, M. F. Ahmed, Arsenic mobility and groundwater extraction in Bangladesh. Science 2002, 298, 1602.
CrossRef | CAS | PubMed |

[40]  S. Sengupta, J. M. McArthur, A. Sarkar, M. J. Leng, P. Ravenscroft, R. J. Howarth, D. M. Banerjee, Do ponds cause arsenic-pollution of groundwater in the Bengal Basin? An answer from West Bengal. Environ. Sci. Technol. 2008, 42, 5156.
CrossRef | CAS | PubMed |

[41]  D. A. Polya, L. Charlet, Rising arsenic risk? Nat. Geosci. 2009, 2, 383.
CrossRef | CAS |

[42]  R. B. Neumann, K. N. Ashfaque, A. B. M. Badruzzaman, M. A. Ali, J. K. Shoemaker, C. F. Harvey, Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat. Geosci. 2010, 3, 46.
CrossRef | CAS |

[43]  A. G. Gault, D. A. Polya, P. R. Lythgoe, M. L. Farquhar, J. M. Charnock, R. A. Wogelius, Arsenic speciation in surface waters and sediments in a contaminated waterway: an IC–ICP-MS and XAS based study. Appl. Geochem. 2003, 18, 1387.
CrossRef | CAS |

[44]  D. Mondal, M. Banerjee, M. Kundu, N. Banerjee, U. Bhattachrya, A. K. Giri, B. Ganguli, S. Sen Roy, D. A. Polya, Comparison of drinking water, raw rice and cooking of rice as asniuc exposure routes in three contrasting areas of West Bengal, India. Environ. Geochem. Health 2010, 32, 463.
CrossRef | CAS | PubMed |

[45]  M. Banerjee, N. Banerjee, P. Bhattacharjee, D. Mondal, P. R. Lythgoe, M. Martinez, J. Pan, D. A. Polya, A. K. Giri, High arsenic rice is associated with elevated genotoxic effects in humans. Scientific Reports 2013, 3, 2195.
CrossRef | PubMed |

[46]  W. H. Yu, C. M. Harvey, C. F. Harvey, Arsenic in groundwater in Bangladesh: a geostatistical and epidemiological framework for evaluating health effects and potential remedies. Water Resour. Res. 2003, 39, 17.
CrossRef |

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014