CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate reproductive science and technology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


Article << Previous     |     Next >>   Contents Vol 18(8)

The mitochondrial contribution to stem cell biology

Barry D. Bavister

Department of Biological Sciences, University of New Orleans, 200 Computer Center, New Orleans, LA 70148-2960, USA. Email: bbaviste@uno.edu
PDF (504 KB) $25
 Export Citation


The distribution and functions of mitochondria in stem cells have not been examined, yet the contributions of these organelles to stem cell viability and differentiation must be vitally important in view of their critical roles in all other cell types. A key role for mitochondria in stem cells is indicated by reports that they translocate in the oocyte during fertilisation to cluster around the pronuclei and can remain in a perinuclear pattern during embryo development. This clustering appears to be essential for normal embryonic development. Because embryonic stem cells are derived from fertilised oocytes, and eventually can differentiate into ‘adult’ stem cells, it was hypothesised that mitochondrial perinuclear clustering persists through preimplantation embryo development into the stem cells, and that this localisation is indicative of stem cell pluripotency. Further, it was predicted that mitochondrial activity, as measured by respiration and adenosine triphosphate (ATP) content, would correlate with the degree of perinuclear clustering. It was also predicted that these morphological and metabolic measurements could serve as indicators of ‘stemness.’ This article reviews the distribution and metabolism of mitochondria in a model stem cell line and how this information is related to passage number, differentiation and/or senescence. In addition, it describes mitochondrial DNA deletions in oocytes and embryos that could adversely affect stem cell performance.

Keywords: adipose stem cells, differentiation, metabolism, mitochondrial localisation, rhesus monkey, senescence.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016