Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Inactivated Sendai-virus-mediated fusion improves early development of cloned bovine embryos by avoiding endoplasmic-reticulum-stress-associated apoptosis

Bong-Seok Song A G , Ji-Su Kim A G , Seung-Bin Yoon A B G , Kyu-Sun Lee C , Deog-Bon Koo B , Dong-Seok Lee D , Young-Kug Choo E , Jae-Won Huh A , Sang-Rae Lee A , Sun-Uk Kim A , Sang-Hyun Kim A , Hwan Mook Kim F and Kyu-Tae Chang A H
+ Author Affiliations
- Author Affiliations

A National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 363-883, Republic of Korea.

B Department of Biotechnology, Daegu University, Gyeongbuk 712-714, Republic of Korea.

C Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea.

D College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea.

E Department of Life Science, Wonkwang University, Jeonbuk 570-749, Republic of Korea.

F Department of Pharmacy, College of Pharmacy, Korea University, Chungnam 339–700, Repubic of Korea.

G These authors contributed equally to this work.

H Corresponding author. Email: changkt@kribb.re.kr

Reproduction, Fertility and Development 23(6) 826-836 https://doi.org/10.1071/RD10194
Submitted: 6 August 2010  Accepted: 25 March 2011   Published: 13 July 2011

Abstract

Somatic cell nuclear transfer (SCNT) is a powerful tool, not only for producing cloned animals, but also in revealing various early developmental events. However, relatively little is known regarding the biological events and underlying mechanism(s) directly associated with early development of SCNT embryos. Here, we show that production of high-quality bovine SCNT blastocysts is dependent on the method used for fusion and the associated reduction in endoplasmic reticulum (ER) stress. During fusion between the donor cell and the enucleated oocyte, electrofusion triggers spontaneous oocyte activation, accompanied by an increase in intracellular Ca2+ and improper nuclear remodelling. These events can be greatly reduced by the use of Sendai virus (SV)-mediated fusion. Moreover, SV-SCNT improves the blastulation rate and blastocyst quality, defined by the number and ratio of inner cell mass and trophectoderm cells in each blastocyst, in comparison with electrofusion-mediated SCNT (E-SCNT). Interestingly, expression of ER-stress-associated genes and blastomere apoptosis were significantly increased in E-SCNT embryos. These increases could be reversed by inhibition of ER stress or by using the SV-mediated fusion method. Collectively, these results indicate that SV-mediated fusion improves the developmental competence and quality of SCNT blastocysts, by reducing ER-stress-associated apoptosis.

Additional keywords: electrofusion, somatic cell nuclear transfer.


References

Baird, D. T., Collins, J., Egozcue, J., Evers, L. H., Gianaroli, L., Leridon, H., Sunde, A., Templeton, A., Van Steirteghem, A., Cohen, J., Crosignani, P. G., Devroey, P., Diedrich, K., Fauser, B. C., Fraser, L., Glasier, A., Liebaers, I., Mautone, G., Penney, G., and Tarlatzis, B. (2005). Fertility and ageing. Hum. Reprod. Update 11, 261–276.
Fertility and ageing.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3msVKhsA%3D%3D&md5=9abb92dbd6e91fac49188ed0cc9fd63fCAS | 15831503PubMed |

Bavister, B. D., and Yanagimachi, R. (1977). The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro. Biol. Reprod. 16, 228–237.
The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s%2FovVWgtQ%3D%3D&md5=62c6a004b1a7d84cdb439b4e02dfd93eCAS | 831847PubMed |

Betts, D., Bordignon, V., Hill, J., Winger, Q., Westhusin, M., Smith, L., and King, W. (2001). Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl. Acad. Sci. USA. 98, 1077–1082.
Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht1Smsbw%3D&md5=5a8046966f1380db87eed308a1b9b7a7CAS |

Boquest, A. C., Grupen, C. G., Harrison, S. J., McIlfatrick, S. M., Ashman, R. J., d’Apice, A. J., and Nottle, M. B. (2002). Production of cloned pigs from cultured fetal fibroblast cells. Biol. Reprod. 66, 1283–1287.
Production of cloned pigs from cultured fetal fibroblast cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtFWgu7w%3D&md5=bd96c1e92c8b4b1317b7f4d5f1c56c60CAS | 11967188PubMed |

Campbell, K. H., McWhir, J., Ritchie, W. A., and Wilmut, I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66.
Sheep cloned by nuclear transfer from a cultured cell line.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhsFeisLY%3D&md5=363e1b1af5e1caee3fa04fbc3ec8faffCAS | 8598906PubMed |

Cheong, H. T., Takahashi, Y., and Kanagawa, H. (1993). Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes. Biol. Reprod. 48, 958–963.
Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3ksVertQ%3D%3D&md5=991c672c06867aa893af38f4ce28f986CAS | 8481482PubMed |

Cheong, H. T., Takahashi, Y., and Kanagawa, H. (1994). Relationship between nuclear remodeling and subsequent development of mouse embryonic nuclei transferred to enucleated oocytes. Mol. Reprod. Dev. 37, 138–145.
Relationship between nuclear remodeling and subsequent development of mouse embryonic nuclei transferred to enucleated oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3jsFaqug%3D%3D&md5=c9ca4f8cc4ae2d757b14727b26a30a26CAS | 8179897PubMed |

Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., Ponce de Leon, F. A., and Robl, J. M. (1998). Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat. Biotechnol. 16, 642–646.
Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkt1Gntbo%3D&md5=54895510fc7b538c8ebe56ea563a9c53CAS | 9661197PubMed |

Galli, C., Lagutina, I., Vassiliev, I., Duchi, R., and Lazzari, G. (2002). Comparison of microinjection (piezo-electric) and cell fusion for nuclear transfer success with different cell types in cattle. Cloning Stem Cells 4, 189–196.
Comparison of microinjection (piezo-electric) and cell fusion for nuclear transfer success with different cell types in cattle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFSksrs%3D&md5=870c46f0edf4b06bba4cf4ebd45ac13cCAS | 12398800PubMed |

Haberzettl, P., Vladykovskaya, E., Srivastava, S., and Bhatnagar, A. (2009). Role of endoplasmic reticulum stress in acrolein-induced endothelial activation. Toxicol. Appl. Pharmacol. 234, 14–24.
Role of endoplasmic reticulum stress in acrolein-induced endothelial activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2lurjL&md5=8c7327ca6a0ec9f354b104ab6d44ece8CAS | 18951912PubMed |

Hao, L., Vassena, R., Wu, G., Han, Z., Cheng, Y., Latham, K. E., and Sapienza, C. (2009). The unfolded protein response contributes to preimplantation mouse embryo death in the DDK syndrome. Biol. Reprod. 80, 944–953.
The unfolded protein response contributes to preimplantation mouse embryo death in the DDK syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVWqu7c%3D&md5=540cf4f6f7b4e6853fa11fc653d53402CAS | 19129515PubMed |

Kang, Y. K., Koo, D. B., Park, J. S., Choi, Y. H., Kim, H. N., Chang, W. K., Lee, K. K., and Han, Y. M. (2001). Typical demethylation events in cloned pig embryos. Clues on species-specific differences in epigenetic reprogramming of a cloned donor genome. J. Biol. Chem. 276, 39 980–39 984.
Typical demethylation events in cloned pig embryos. Clues on species-specific differences in epigenetic reprogramming of a cloned donor genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFGhsrk%3D&md5=c1487c190c6512ee6873b541a4109336CAS |

Kawahara, M., Wakai, T., Yamanaka, K., Kobayashi, J., Sugimura, S., Shimizu, T., Matsumoto, H., Kim, J. H., Sasada, H., and Sato, E. (2005). Caffeine promotes premature chromosome condensation formation and in vitro development in porcine reconstructed embryos via a high level of maturation promoting factor activity during nuclear transfer. Reproduction 130, 351–357.
Caffeine promotes premature chromosome condensation formation and in vitro development in porcine reconstructed embryos via a high level of maturation promoting factor activity during nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWisr3J&md5=74144a369766ba540e603da0c07ff318CAS | 16123242PubMed |

Koo, D.-B., Kang, Y.-K., Choi, Y.-H., Park, J. S., Kim, H.-N., Oh, K. B., Son, D.-S., Park, H., Lee, K.-K., and Han, Y.-M. (2002). Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. Biol. Reprod. 67, 487–492.
Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKqt7g%3D&md5=f75eb00674e5dfba8499923e2a377a79CAS | 12135886PubMed |

Levy, R. R., Cordonier, H., Czyba, J. C., and Guerin, J. F. (2001). Apoptosis in preimplantation mammalian embryo and genetics. Ital. J. Anat. Embryol. 106, 101–108.
| 1:STN:280:DC%2BD3MnosF2rtw%3D%3D&md5=ce9497122d735585bfd1e876f1ea365aCAS | 11732565PubMed |

Marangos, P., and Carroll, J. (2004). Fertilization and InsP3-induced Ca2+ release stimulate a persistent increase in the rate of degradation of cyclin B1 specifically in mature mouse oocytes. Dev. Biol. 272, 26–38.
Fertilization and InsP3-induced Ca2+ release stimulate a persistent increase in the rate of degradation of cyclin B1 specifically in mature mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFyhsL0%3D&md5=3fd4b9162a8c7e93d406ce39b2b2bb6cCAS | 15242788PubMed |

Mitalipov, S. M., Zhou, Q., Byrne, J. A., Ji, W. Z., Norgren, R. B., and Wolf, D. P. (2007). Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling. Hum. Reprod. 22, 2232–2242.
Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2svjsVOmtQ%3D%3D&md5=adb1dce65f72cb47bb2e3def42a23ad1CAS | 17562675PubMed |

Parrish, J. J., Susko-Parrish, J. L., Leibfried-Rutledge, M. L., Critser, E. S., Eyestone, W. H., and First, N. L. (1986). Bovine in vitro fertilization with frozen-thawed semen. Theriogenology 25, 591–600.
Bovine in vitro fertilization with frozen-thawed semen.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvV2itQ%3D%3D&md5=5d839a2b4af738619b275a5b08dfd03dCAS | 16726150PubMed |

Rickords, L. F., and White, K. L. (1992). Electrofusion-induced intracellular Ca2+ flux and its effect on murine oocyte activation. Mol. Reprod. Dev. 31, 152–159.
Electrofusion-induced intracellular Ca2+ flux and its effect on murine oocyte activation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383oslGjsQ%3D%3D&md5=8de7808d00e36eae454c2002ade769c2CAS | 1599684PubMed |

Rosenkranz, C., Dickie, M. B., Auer, W., and Holzmann, A. (1993). Successful in vitro fertilization in cattle with transmigrated semen without heparin, hypotaurine and adrenaline supplements. Gynakol. Geburtshilfliche Rundsch. 33, 208–209.
| 1:STN:280:DyaK2c7ivFahug%3D%3D&md5=05a5bdb2cc56c047ae125d7f82b7c4e3CAS | 8298317PubMed |

Sakatani, M., Suda, I., Oki, T., Kobayashi, S., and Takahashi, M. (2007). Effects of purple sweet potato anthocyanins on development and intracellular redox status of bovine preimplantation embryos exposed to heat shock. J. Reprod. Dev. 53, 605–614.
Effects of purple sweet potato anthocyanins on development and intracellular redox status of bovine preimplantation embryos exposed to heat shock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosVylsLk%3D&md5=f956895ed6f4ecafe7d44adccefb6309CAS | 17325453PubMed |

Schröder, M., and Kaufman, R. J. (2005). The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789.
The mammalian unfolded protein response.Crossref | GoogleScholarGoogle Scholar | 15952902PubMed |

Shin, M. R., Park, S. W., Shim, H., and Kim, N. H. (2002). Nuclear and microtubule reorganization in nuclear-transferred bovine embryos. Mol. Reprod. Dev. 62, 74–82.
Nuclear and microtubule reorganization in nuclear-transferred bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVChu74%3D&md5=f13010077dd803805f932e9e02e1fbb5CAS | 11933163PubMed |

Song, B. S., Lee, S. H., Kim, S. U., Kim, J. S., Park, J. S., Kim, C. H., Chang, K. T., Han, Y. M., Lee, K. K., Lee, D. S., and Koo, D. B. (2009). Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells. BMC Dev. Biol. 9, 44.
Nucleologenesis and embryonic genome activation are defective in interspecies cloned embryos between bovine ooplasm and rhesus monkey somatic cells.Crossref | GoogleScholarGoogle Scholar | 19635167PubMed |

Sun, F. Z., Hoyland, J., Huang, X., Mason, W., and Moor, R. M. (1992). A comparison of intracellular changes in porcine eggs after fertilization and electroactivation. Development 115, 947–956.
| 1:STN:280:DyaK3s%2FotlCgtQ%3D%3D&md5=c57fd72f4d4e56f9012dac7d0fe2b250CAS | 1451669PubMed |

Szollosi, D., Czolowska, R., Szollosi, M. S., and Tarkowski, A. K. (1988). Remodeling of mouse thymocyte nuclei depends on the time of their transfer into activated, homologous oocytes. J. Cell Sci. 91, 603–613.
| 3267148PubMed |

Tachibana, M., Sparman, M., Sritanaudomchai, H., Ma, H., Clepper, L., Woodward, J., Li, Y., Ramsey, C., Kolotushkina, O., and Mitalipov, S. (2009). Mitochondrial gene replacement in primate offspring and embryonic stem cells. Nature 461, 367–372.
Mitochondrial gene replacement in primate offspring and embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGitbfP&md5=5f82710f2457c3fff8196bc723b57355CAS | 19710649PubMed |

Takahashi, T., Igarashi, H., Kawagoe, J., Amita, M., Hara, S., and Kurachi, H. (2009). Poor embryo development in mouse oocytes aged in vitro is associated with impaired calcium homeostasis. Biol. Reprod. 80, 493–502.
Poor embryo development in mouse oocytes aged in vitro is associated with impaired calcium homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1amtLk%3D&md5=c2e6917c47f540245eb762769b3a3d26CAS | 19038861PubMed |

Tani, T., Kato, Y., and Tsunoda, Y. (2001). Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming. Biol. Reprod. 64, 324–330.
Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtFCrsQ%3D%3D&md5=d0987a5d72b93bcf697df1e4a6521109CAS | 11133690PubMed |

Tao, T., Reichelt, B., and Niemann, H. (1995). Ratio of inner cell mass and trophoblastic cells in demi- and intact pig embryos. J. Reprod. Fertil. 104, 251–258.
Ratio of inner cell mass and trophoblastic cells in demi- and intact pig embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntlCjsrc%3D&md5=b480bb40e33742d4c14d5181bf640e27CAS | 7473416PubMed |

Tsunoda, Y., and Kato, Y. (1993). Nuclear transplantation of embryonic stem cells in mice. J. Reprod. Fertil. 98, 537–540.
Nuclear transplantation of embryonic stem cells in mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2Fhs1WgtA%3D%3D&md5=b517cf4721c94c73b96ec24c8b3a2a51CAS | 8410822PubMed |

Uhm, S. J., Gupta, M. K., Das, Z. C., Lim, K. T., Yang, J. H., and Lee, H. T. (2011). Effect of 3-hydroxyflavone on pig embryos produced by parthenogenesis or somatic cell nuclear transfer. Reprod. Toxicol. 31, 231–238.
Effect of 3-hydroxyflavone on pig embryos produced by parthenogenesis or somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsFygtbw%3D&md5=f22ed5dcb1e9053c9d40d5395b4da1c3CAS | 21126572PubMed |

Vandaele, L., Mateusen, B., Maes, D. G., de Kruif, A., and Van Soom, A. (2007). Temporal detection of caspase-3 and -7 in bovine in vitro produced embryos of different developmental capacity. Reproduction 133, 709–718.
Temporal detection of caspase-3 and -7 in bovine in vitro produced embryos of different developmental capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFeku70%3D&md5=b76f9da3ace40cd03401e8107c2c7eb5CAS | 17504915PubMed |

Wakasugi, N. (1974). A genetically determined incompatibility system between spermatozoa and eggs leading to embryonic death in mice. J. Reprod. Fertil. 41, 85–96.
A genetically determined incompatibility system between spermatozoa and eggs leading to embryonic death in mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M%2Fkt12rsw%3D%3D&md5=043ee71867a1e117b80b8eae2f6c22ecCAS | 4431024PubMed |

Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.
Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFKnsbs%3D&md5=ad057dde7a792c460b932ac9fa1474fcCAS | 9690471PubMed |

Wee, G., Koo, D. B., Song, B. S., Kim, J. S., Kang, M. J., Moon, S. J., Kang, Y. K., Lee, K. K., and Han, Y. M. (2006). Inheritable histone H4 acetylation of somatic chromatins in cloned embryos. J. Biol. Chem. 281, 6048–6057.
Inheritable histone H4 acetylation of somatic chromatins in cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVeisr8%3D&md5=9cb4d9ebe12aefd6b77b34bfba1266bbCAS | 16371357PubMed |

Wells, D. N., Misica, P. M., and Tervit, H. R. (1999). Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol. Reprod. 60, 996–1005.
Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVGqur4%3D&md5=389a94be47a7f5ad3d04e90fab5a6624CAS | 10084977PubMed |

Xie, Q., Khaoustov, V. I., Chung, C. C., Sohn, J., Krishnan, B., Lewis, D. E., and Yoffe, B. (2002). Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology 36, 592–601.
Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVSkt7k%3D&md5=c7adb279d531366d54c120ead7f8bf18CAS | 12198651PubMed |

Xu, C., Bailly-Maitre, B., and Reed, J. C. (2005). Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656–2664.
Endoplasmic reticulum stress: cell life and death decisions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVygt7jO&md5=ac3cc23d6ea7065c31b3490a92e5d625CAS | 16200199PubMed |

Yin, X. J., Tani, T., Yonemura, I., Kawakami, M., Miyamoto, K., Hasegawa, R., Kato, Y., and Tsunoda, Y. (2002). Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol. Reprod. 67, 442–446.
Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFKqtrc%3D&md5=14e5a94ab4f5b57b3b1bf50041c2fce4CAS | 12135879PubMed |

You, J., Kim, J., Lim, J., and Lee, E. (2010). Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species. Theriogenology 74, 777–785.
Anthocyanin stimulates in vitro development of cloned pig embryos by increasing the intracellular glutathione level and inhibiting reactive oxygen species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVGrtbjJ&md5=d8646e8e9f971a08bac16eee8adf0ab3CAS | 20537699PubMed |

Yuan, L., Cao, Y., Oswald, F., and Knochel, W. (2008). IRE1beta is required for mesoderm formation in Xenopus embryos. Mech. Dev. 125, 207–222.
IRE1beta is required for mesoderm formation in Xenopus embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslGjsbk%3D&md5=d41ce233224922111d8d0a1aba4638c2CAS | 18191552PubMed |

Zhao, L., and Ackerman, S. L. (2006). Endoplasmic reticulum stress in health and disease. Curr. Opin. Cell Biol. 18, 444–452.
Endoplasmic reticulum stress in health and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmslyqt7k%3D&md5=8fd1a4b8711adce546e9e77df54ce668CAS | 16781856PubMed |