CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Soil Research   
Soil Research
Journal Banner
  Soil, Land Care & Environmental Research
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
For Advertisers
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

Now Online

Land Resources Surveys


Article << Previous     |     Next >>   Contents Vol 42(4)

Micromorphology and electron microprobe analysis of phosphorus and potassium forms of an Indian Black Earth (IBE) Anthrosol from Western Amazonia

C. E. G. R. Schaefer, H. N. Lima, R. J. Gilkes and J. W. V. Mello

Australian Journal of Soil Research 42(4) 401 - 409
Published: 25 June 2004


The Indian black earth (IBE) anthrosols (Terra Preta) overlying deep weathered kaolinitic soils of Western Amazonia represent one of the most interesting features of the Amazon Basin, with broad implications to human ecology. We studied one IBE site, in particular the chemical composition and forms of phosphate and potassium, micropedological attributes, and their ecological implications. In the IBE anthrosol, high levels of available P were due to the presence of comminuted fish and animal bone apatite. Flakes of 2 : 1 layer silicates rich in K occurred in pottery remains in the IBE, indicating that they were manufactured from neighbouring 'Várzea' soils. Amazon 'Várzea' environs were the only source of the soil material for pottery, since K-rich 2 : 1 minerals are not present in Terra Firme kaolinitic sediments. High available and total P contents of IBE were related to abundant, very small particles (5–60 μm) of Ca-P and Al-P forms, resolved by s.e.m./EDS at very high magnification. These features originated in animal bones and fish spines that have chemically altered in the soil environment. Earthworm and other biological channels exhibited high Al/P contents, due to apatite ingestion, comminution, and alteration. In transitional horizons, abundant secondary Al/P was present in biological channels, indicating intense biological activity down to 1.5 m. In deeper B horizons, apatite fragments are rare. Charcoal residues of incompletely combusted wood are widespread down to the B horizon. No spatial or concentration relationships exist between P and total free-iron in the soil.

Keywords: Anthropic horizon, bone-apatite, phosphate forms, pre-Colombian land use, slash-and-burn.

Full text doi:10.1071/SR03106

© CSIRO 2004

blank image
Subscriber Login

PDF (696 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016