CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Soil Research   
Soil Research
Journal Banner
  Soil, Land Care & Environmental Research
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
For Advertisers
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

Now Online

Land Resources Surveys


Article << Previous     |     Next >>   Contents Vol 32(6)

Corrigenda - Adsorption and degradation of triazine herbicides in soils used for lupin production in Western-Australia - Laboratory studies and a simulation model

SR Walker and WM Blacklow

Australian Journal of Soil Research 32(6) 1189 - 1205
Published: 1994


Most lupins (Lupinus angustifolius L. and L. albus L.) grown in Western Australia are sown with simazine, and some with atrazine, to give persistent control of a broad spectrum of weeds. Rates of application are adjusted for soil types yet there can be ineffective weed control and crop damage. The kinetics of degradation in four soils was studied in the laboratory to determine how it varied between soils and was modified by soil temperature, pH, moisture and gamma irradiation. The time for half the herbicide to be lost from the soils (HL) varied from 42 to 110 days at 20°C and -0.08 MPa water potential. Loss was rapid in the first day of incubation and subsequent losses were described precisely by first-order functions. However, the first-order half-lives (t1/2) were 3-21 days greater than the corresponding HLs, because the first-day losses were unaccounted for by the first-order functions. Gamma irradiation had no influence on degradation kinetics which supported chemical hydrolysis as the mechanism of degradation. The t1/2 values were correlated positively with the proportion of applied herbicide that was adsorbed by the soils (PAd). Atrazine was more persistent than simazine and had higher PAd values. The PAd values increased with soil pH, organic matter and clay content. The t1/2 values decreased exponentially with temperatures from 28 to 9-degrees-C, and decreased with soil water potentials from -0.08 to -1.50 MPa for a loamy sand at a near-neutral pH. A computer simulation model gave good agreement with observed residue decays and showed that the initially rapid losses from the soils could be explained by high rates of hydrolysis when all the applied herbicide was in the soil solution and, consequently, herbicide concentrations were high (87-100 mM). Rapid losses of the triazines in the field are likely in warm, acidic soils-particularly if the herbicide concentrations in the soil solution are high for reasons of limited vertical distribution of the applied herbicides through the soil profile. Keywords: Simazine; Atrazine; Chemical Hydrolysis; Reaction Kinetics;

Full text doi:10.1071/SR9941189c

© CSIRO 1994

blank image
Subscriber Login

PDF (19 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015