Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Climate change: the effect of DMS emissions

Peter S. Liss A C and James E. Lovelock B
+ Author Affiliations
- Author Affiliations

A School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.

B Green College, Oxford University, Oxford, OX2 6HG, UK.

C Corresponding author. Email: p.liss@uea.ac.uk

Environmental Chemistry 4(6) 377-378 https://doi.org/10.1071/EN07072
Submitted: 20 September 2007  Accepted: 12 November 2007   Published: 6 December 2007

Environmental context. The idea that gases produced by plankton living in the oceans can affect cloudiness and regulate climate was given prominence by the promulgation more than 20 years ago by Charlson, Lovelock, Andreae and Warren of the CLAW hypothesis. In the intervening period it has been difficult to prove or disprove the idea, although much research has flowed from its enunciation. Perhaps its lasting legacy is in the way we view the planet and how research is conducted to try to understand how it operates.


References


[1]   R. J. Charlson , J. E. Lovelock , M. O. Andreae , S. J. Warren , Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 1987 , 326,  655.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   G. E. Shaw , Biocontrolled thermstasis involving the sulfur cycle. Clim. Change 1983 , 5,  297.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   P. S. Liss , P. G. Slater , Flux of gases across the air–sea interface. Nature 1974 , 247,  181.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   Andreae M. O., The ocean as a source of sulfur compounds, in The role of air–sea exchange in geochemical cycling (Ed. P. Buat-Menard) 1986, p. 331 (Reidel: Dordrecht, Netherlands).

[5]   A. J. Kettle , M. O. Andreae , D. Amouroux , T. W. Andreae , T. S. Bates , H. Berresheim , H. Bingemer , R. Boniforti , et al. A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month. Global Biogeochem. Cy. 1999 , 13,  399.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[6]   A. R. Ravishankara , Y. Rudich , R. Talukdar , S. B. Barone , Oxidation of atmospheric reduced sulphur compounds: perspective from laboratory studies. Philos. Trans. Roy. Soc. B 1997 , 352,  171.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[7]   R. Von Glasow , P. J. Crutzen , Model study of multiphase DMS oxidation with a focus on halogens. Atmos. Chem. Phys. 2004 , 4,  589.
         open url image1

[8]   E. W. Wolff , H. Fischer , F. Fundel , U. Ruth , B. Twarloh , G. C. Littot , R. Mulvaney , R. Röthliscberge , Southern Ocean sea-ice extent, productivity and iron over the past eight glacial cycles. Nature 2006 , 440,  491.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[9]   S. M. Vallina , R. Simó , Strong relationship between DMS and the solar radiation dose over the global ocean. Science 2007 , 315,  506.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[10]   S. M. Vallina , R. Simó , S. Gassó , C. de Boyer-Montégut , E. del Río , E. Jurado , J. Dachs , Analysis of a potential “solar radiation dose–dimethylsulfide–cloud condensation nuclei” link from globally mapped seasonal correlations. Global Biogeochem. Cy. 2007 , 21,  GB2004.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   N. Meskhidze , A. Nenes , Plankton and cloudiness in the Southern Ocean. Science 2006 , 314,  1419.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[12]   R. Cropp , J. Norbury , R. Braddock , Dimethylsulphide, clouds, and phytoplankton: insights from a simple plankton ecosystem feedback model. Global Biogeochem. Cy. 2007 , 21,  GB2024.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   M. Chin , D. J. Jacob , Anthropogenic and natural contributions to tropospheric sulfate: a global model analysis. J. Geophys. Res. 1996 , 101,  18691.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   T. S. Bates , B. K. Lamb , A. Guenther , J. Dignon , R. E. Stoiber , Sulfur emissions to the atmosphere from natural sources. J. Atmos. Chem. 1992 , 14,  315.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   J. E. Lovelock , L. Kump , Failure of climate regulation in a geophysiological model. Nature 1994 , 369,  732.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[16]   C. Leck , E. K. Bigg , Source and evolution of the marine aerosol – a new perspective. Geophys. Res. Lett. 2005 , 32,  L19803.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   A. Saiz-Lopez , A. S. Mahajan , R. A. Salmon , S. J.-B. Baguitte , A. E. Jones , H. K. Roscoe , J. M. C. Plane , Boundary layer halogens in coastal Antarctica. Science 2007 , 317,  348.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1