Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Assessment of metal–extracellular polymeric substances interactions by asymmetrical flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry

Enrica Alasonati A C , Stephane Dubascoux B D , Gaetane Lespes B and Vera I. Slaveykova A E
+ Author Affiliations
- Author Affiliations

A Environmental Biophysical Chemistry, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Station 2, CH-1015 Lausanne, Switzerland.

B Université de Pau et des Pays de l’Adour (UPPA), Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, UMR 5254, Helioparc, avenue du Président Pierre Angot, F-64053 Pau cedex, France.

C Present address: Laboratoire National de Métrologies et d’Essais (LNE), Département Biomédical et Chimie Inorganique, 1 rue Gaston Boissier, F-75724 Paris cedex, France.

D Present address: Montpellier SupAgro, UMR IATE, Place Viala, F-34060 Montpellier cedex, France.

E Corresponding author. Email: vera.slaveykova@epfl.ch

Environmental Chemistry 7(2) 215-223 https://doi.org/10.1071/EN09148
Submitted: 24 November 2009  Accepted: 18 February 2010   Published: 22 April 2010

Environmental context. Extracellular polymeric substances (EPS) are soluble polymers that are liberated from microorganisms and represent an important component of the natural organic matter in the aquatic and terrestrial environment. These substances affect nutrient and toxic metal cycling, both owing to their metal binding properties and their effect on aggregation and sedimentation. In order to obtain more information on their role in metal transport, EPS size (molar mass) distributions and the associated Ca, Cd and Pb were measured by using asymmetrical flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry.

Abstract. Extracellular polymeric substances (EPSs) excreted by the bacterium Sinorhizobium meliloti and associated Ca, Cd and Pb were characterised by asymmetrical flow field-flow fractionation coupled with UV spectrophotometry and inductively coupled plasma mass spectrometry in terms of molar-mass distributions, number- and weight-average molar masses and polydispersity index. Two major populations with weight-average molar masses of 74 × 103 and 1.35 × 106 g mol–1 were obtained for the EPS. Characterisation of the whole EPS–metal interactions evidenced the preferential binding of Ca and Cd to the low molar mass fraction, whereas Pb associated mainly with the high molar mass (HMM) fraction. Comparison with the EPS produced by exoY-mutant, deficient in HMM-EPS excretion, confirmed the preferential binding of Pb to the high molar mass fraction. Enrichment of the EPS with increasing metal concentrations induced the formation of aggregates, which was most pronounced in the presence of 10–4 mol L–1 Pb.

Additional keywords: cadmium, lead, metal binding, molar-mass distributions, Sinorhizobium meliloti.


Acknowledgements

The authors gratefully acknowledge the financial support provided by Swiss National Science Foundation project PP002–102640, and Programme d’action intégrée (PAI) ‘Germaine de Stael’.


References


[1]   Wolfaardt G., Lawrence J., Korber D., Function of Extracellular Polymeric Substances 1999 (Springer-Verlag: Berlin, Germany).

[2]   H. C. Flemming , J. Wingender , Relevance of microbial extracellular polymeric substances – Part I: technical aspects. Water Sci. Technol. 2001 , 43,  9.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[3]   B. Vu , M. Chen , R. J. Crawford , E. P. Ivanova , Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 2009 , 14,  2535.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[4]   Y. Kaci , A. Heyraud , M. Barakat , T. Heulin , Isolation and identification of an EPS-producing rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Res. Microbiol. 2005 , 156,  522.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[5]   N. Amellal , G. Burtin , F. Bartoli , T. Heulin , Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl. Environ. Microbiol. 1998 , 64,  3740.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   E. B. Roberson , S. Sarig , C. Shennan , M. K. Firestone , Nutritional management of microbial polysaccharide production and aggregation in an agricultural soil. Soil Sci. Soc. Am. J. 1995 , 59,  1587.
        |  CAS |  open url image1

[7]   M. Fauvart , J. Michiels , Rhizobial secreted proteins as determinants of host specificity in the rhizobium–legume symbiosis. FEMS Microbiol. Lett. 2008 , 285,  1.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[8]   W. Arnold , A. Becker , M. Keller , A. Roxlau , A. Puhler , The role of Rhizobium meliloti surface polysaccharides in the infection of Medicago sativa nodules. Endo. Cell Res. 1994 , 10,  17.
         open url image1

[9]   K. M. Jones , H. Kobayashi , B. W. Davies , M. E. Taga , G. C. Walker , How rhizobial symbionts invade plants: the SinorhizobiumMedicago model. Nat. Rev. Microbiol. 2007 , 5,  619.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[10]   A. F. Haag , S. Wehmeier , S. Beck , V. L. Marlow , V. Fletcher , E. K. James , G. P. Ferguson , The Sinorhizobium meliloti LpxXL and AcpXL proteins play important roles in bacteroid development within alfalfa. J. Bacteriol. 2009 , 191,  4681.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[11]   J. Janecka , M. B. Jenkins , N. S. Brackett , L. W. Lion , W. C. Ghiorse , Characterization of a Sinorhizobium isolate and its extracellular polymer implicated in pollutant transport in soil. Appl. Environ. Microbiol. 2002 , 68,  423.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[12]   J. H. Chen , L. W. Lion , W. C. Ghiorse , M. L. Shuler , Mobilization of adsorbed cadmium and lead in aquifer material by bacterial extracellular polymers. Water Res. 1995 , 29,  421.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[13]   S. Comte , G. Guibaud , M. Baudu , Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties. Part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microb. Technol. 2006 , 38,  237.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[14]   G. Guibaud , S. Comte , F. Bordas , S. Dupuy , M. Baudu , Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 2005 , 59,  629.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[15]   H. Liu , H. H. P. Fang , Extraction of extracellular polymeric substances (EPS) of sludges. J. Biotechnol. 2002 , 95,  249.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   C. Lamelas , M. Benedetti , K. J. Wilkinson , V. I. Slaveykova , Characterization of H+ and Cd2+ binding properties of the bacterial exopolysaccharides. Chemosphere 2006 , 65,  1362.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[17]   I. W. Sutherland , Microbial exopolysaccharides – structural subtleties and their consequences. Pure Appl. Chem. 1997 , 69,  1911.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[18]   Y. Yuan , M. R. Oberholzer , A. M. Lenhoff , Size does matter: electrostatically determined surface coverage trends in protein and colloid adsorption. Coll. Surf. A 2000 , 165,  125.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[19]   I. A. Worms , Z. Al-Gorani Szigeti , S. Dubascoux , G. Lespes , J. Traber , L. Sigg , V. I. Slaveykova , Colloidal organic matter from wastewater treatment plant effluents: characterization and role in metal distribution. Water Res. 2010 , 44,  340.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[20]   E. Alasonati , B. Stolpe , M. A. Benincasa , M. Hassellov , V. I. Slaveykova , Asymmetrical flow field-flow fractionation – multidetection system as a tool for studying metal–alginate interactions. Environ. Chem. 2006 , 3,  192.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[21]   C. S. Freire-Nordi , A. A. H. Vieira , O. R. Nascimento , The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochem. 2005 , 40,  2215.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   T. Kowalkowski , B. Buszewski , C. Cantado , F. Dondi , Field-flow fractionation: theory, techniques, applications and the challenges. Crit. Rev. Anal. Chem. 2006 , 36,  129.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[23]   S. K. R. Williams , D. Lee , Field-flow fractionation of proteins, polysaccharides, synthetic polymers, and supramolecular assemblies. J. Sep. Sci. 2006 , 29,  1720.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[24]   A. Becker , K. Niehaus , A. Puhler , Low-molecular-weight succinoglycan is predominantly produced by Rhizobium meliloti strains carrying a mutated ExoP protein characterized by a periplasmic N-terminal domain and a missing C-terminal domain. Mol. Microbiol. 1995 , 16,  191.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[25]   M. Persmark , P. Pittman , J. S. Buyer , B. Schwyn , P. R. Gill , J. B. Neilands , Isolation and structure of Rhizobactin-1021, a siderophore from the alfalfa symbiont Rhizobium meliloti 1021. JACS 1993 , 115,  3950.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[26]   A. Hubber , A. C. Vergunst , J. T. Sullivan , P. J. J. Hooykaas , C. W. Ronson , Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VIRB/D4 type IV secretion system. Mol. Microbiol. 2004 , 54,  561.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[27]   X. Perret , C. Staehelin , W. J. Broughton , Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 2000 , 64,  180.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[28]   J. A. Leigh , E. R. Signer , G. C. Walker , Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc. Natl. Acad. Sci. USA 1985 , 82,  6231.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[29]   B. B. Reinhold , S. Y. Chan , T. L. Reuber , A. Marra , G. C. Walker , V. N. Reinhold , Detailed structural characterization of succinoglycan, the major exopolysaccharide of Rhizobium meliloti Rm1021. J. Bacteriol. 1994 , 176,  1997.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[30]   H. P. Cheng , S. Y. Yao , The key Sinorhizobium meliloti succinoglycan biosynthesis gene ExoY is expressed from two promoters. FEMS Microbiol. Lett. 2004 , 231,  131.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[31]   A. M. Cosme , A. Becker , M. R. Santos , L. A. Sharypova , P. M. Santos , L. M. Moreira , The outer membrane protein TolC from Sinorhizobium meliloti affects protein secretion, polysaccharide biosynthesis, antimicrobial resistance, and symbiosis. Mol. Plant Microbe Interact. 2008 , 21,  947.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[32]   D. Niemeyer , A. Becker , The molecular weight distribution of succinoglycan produced by Sinorhizobium meliloti is influenced by specific tyrosine phosphorylation and ATPase activity of the cytoplasmic domain of the ExoP protein. J. Bacteriol. 2001 , 183,  5163.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[33]   J. E. González , G. M. York , G. C. Walker , Rhizobium meliloti exopolysaccharides: synthesis and symbiotic function. Gene 1996 , 179,  141.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[34]   J. A. Leigh , G. C. Walker , Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet. 1994 , 10,  63.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[35]   K. E. Mendrygal , J. E. Gonzalez , Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol. 2000 , 182,  599.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[36]   R. Russa , M. Bruneteau , A. S. Shashkov , T. Urbanik Sypniewska , H. Mayer , Characterization of the lipopolysaccharides from Rhizobium meliloti strain 102f51 and its non-nodulating mutant wl113. Arch. Microbiol. 1996 , 165,  26.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[37]   L. A. Sharypova , G. Chataign , N. Fraysse , A. Becker , V. Poinsot , Overproduction and increased molecular weight account for the symbiotic activity of the RKPZ-modified K polysaccharide from Sinorhizobium meliloti Rm1021. Glycobiology 2006 , 16,  1181.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[38]   W. C. Chin , M. V. Orellana , P. Verdugo , Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature 1998 , 391,  568.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[39]   C. Lamelas , F. Avaltroni , M. Benedetti , K. J. Wilkinson , V. I. Slaveykova , Quantifying Pb and Cd complexation by alginates and the role of metal binding on macromolecular aggregation. Biomacromolecules 2005 , 6,  2756.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[40]   G. Guibaud , F. Bordas , A. Saaid , P. D’Abzac , E. Van Hullebusch , Effect of pH on cadmium and lead binding by extracellular polymeric substances (EPS) extracted from environmental bacterial strains. Colloid Surf. B 2008 , 63,  48.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[41]   S. Comte , G. Gulbaud , M. Baudu , Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: soluble or bound. Process Biochem. 2006 , 41,  815.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[42]   S. Comte , G. Guibaud , M. Baudu , Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. J. Hazard. Mater. 2008 , 151,  185.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[43]   M. Kobayashi , H. Utsugi , K. Matsuda , Intensive UV absorption of dextrans and its application to enzyme reactions. Agric. Biol. Chem. 1986 , 50,  1051.
        |  CAS |  open url image1

[44]   Y. Liu , H. H. P. Fang , Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge. Crit. Rev. Environ. Sci. Technol. 2003 , 33,  237.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[45]   A. Pal , A. K. Paul , Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J. Microbiol. 2008 , 48,  49.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1