Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Humidity driven nanoscale chemical separation in complex organic matter

Veronika Zelenay A , Thomas Huthwelker B , Adéla Křepelová A , Yinon Rudich C and Markus Ammann A D
+ Author Affiliations
- Author Affiliations

A Paul Scherrer Institut, Laboratory of Radiochemistry and Environmental Chemistry, CH-5232 Villigen, Switzerland.

B Paul Scherrer Institut, Swiss Light Source, CH-5232 Villigen, Switzerland.

C Weizmann Institute, Department of Environmental Sciences, Rehovot 76100, Israel.

D Corresponding author. Email: markus.ammann@psi.ch

Environmental Chemistry 8(4) 450-460 https://doi.org/10.1071/EN11047
Submitted: 12 April 2011  Accepted: 6 July 2011   Published: 19 August 2011

Environmental context. The absorption of water by mixtures of organic matter in aerosols influences various atmospheric processes, such as scattering of solar radiation and cloud formation. We use X-ray techniques to elucidate the swelling behaviour of representative organic matter under humid, sub-saturated conditions, and show chemical separation according to the functional group composition in the organic mixtures upon water uptake. The results will further our understanding of the complex role of aerosol organic matter in atmospheric processes.

Abstract. Humic-like substances (HULIS) represent an important fraction of particulate organic matter in the atmosphere. Understanding the water uptake by HULIS and the associated morphology evolution will improve the assessment of their ability to act as cloud condensation nuclei as well as their light scattering properties. The water uptake properties of Suwannee River Fulvic Acid and of tannic acid used as proxy for atmospheric HULIS, were investigated using X-ray absorption spectroscopy in combination with a scanning transmission X-ray microscope. For both compounds, continuous water uptake was observed, whereby in fulvic acid phase separation occurred, resulting in an inhomogeneous organic matrix. Within the inhomogeneous mixture, different regions with different amounts of water uptake could be differentiated based on their spectral signatures in near-edge X-ray absorption fine structure (NEXAFS) spectra, thus based on carbon functional group signatures, indicating that carboxyl-poor compounds separated from carboxyl-rich compounds upon water uptake. The differentiation into fractions with high/low water uptake ability is further refined by considering phenols, aromatic groups, and O-alkylic groups.


References

[1]  M. Kanakidou, J. H. Seinfeld, S. N. Pandis, I. Barnes, F. J. Dentener, M. C. Facchini, R. Van Dingenen, B. Ervens, A. Nenes, C. J. Nielsen, E. Swietlicki, J. P. Putaud, Y. Balkanski, S. Fuzzi, J. Horth, G. K. Moortgat, R. Winterhalter, C. E. L. Myhre, K. Tsigaridis, E. Vignati, E. G. Stephanou, J. Wilson, Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 2005, 5, 1053.
Organic aerosol and global climate modelling: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrtbw%3D&md5=5e4160f2e608fffcf4b66cd8e7bd7799CAS |

[2]  M. C. Jacobson, H. C. Hansson, K. J. Noone, R. J. Charlson, Organic atmospheric aerosols: review and state of the science. Rev. Geophys. 2000, 38, 267.
Organic atmospheric aerosols: review and state of the science.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFejsrg%3D&md5=53aeaf7c02e7a480707cca3e1ac1c7f6CAS |

[3]  P. Saxena, L. M. Hildemann, Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. J. Atmos. Chem. 1996, 24, 57.
Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xjtlymurw%3D&md5=0c65d91318098e7f800e9a7ca3266437CAS |

[4]  S. Decesari, M. C. Facchini, S. Fuzzi, Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach. J. Geophys. Res. 2000, 105 (D1), 1481.
Characterization of water-soluble organic compounds in atmospheric aerosol: a new approach.Crossref | GoogleScholarGoogle Scholar |

[5]  E. Dinar, T. F. Mentel, Y. Rudich, The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles. Atmos. Chem. Phys. 2006, 6, 5213.
The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1eitrc%3D&md5=d0c126b7740d410bdb519a77c10e52e7CAS |

[6]  M. Hallquist, D. J. Stewart, S. K. Stephenson, R. A. Cox, Hydrolysis of N2O5 on sub-micron sulfate aerosols. Phys. Chem. Chem. Phys. 2003, 5, 3453.
Hydrolysis of N2O5 on sub-micron sulfate aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFakt7Y%3D&md5=ff8f0a55891dead47fd35f24ceebc978CAS |

[7]  G. McFiggans, P. Artaxo, U. Baltensperger, H. Coe, M. C. Facchini, G. Feingold, S. Fuzzi, M. Gysel, A. Laaksonen, U. Lohmann, T. F. Mentel, D. M. Murphy, C. D. O’Dowd, J. R. Snider, E. Weingartner, The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys. 2006, 6, 2593.
The effect of physical and chemical aerosol properties on warm cloud droplet activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVWntbY%3D&md5=55c0b3e2e6e6651701f4dcc08865436fCAS |

[8]  J. Haywood, O. Boucher, Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev. Geophys. 2000, 38, 513.
Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFSlsr8%3D&md5=c3301fb80cfe5ff744bfc4745c5a1efcCAS |

[9]  M. O. Andreae, A. Gelencser, Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 2006, 6, 3131.
Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Sns74%3D&md5=0b3eef335183107f51646a4163fc1380CAS |

[10]  F. J. Stevenson, Humus Chemistry: Genesis, Composition, Reaction, 2nd edn 1994 (Wiley: New York).

[11]  J. Dron, I. E. l. Haddad, B. Temime-Roussel, J. L. Jaffrezo, H. Wortham, N. Marchand, Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry. Atmos. Chem. Phys. 2010, 10, 7041.
Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSkt7rO&md5=ca59a11e99d98b1c35e9705e08406f01CAS |

[12]  I. Salma, T. Meszaros, W. Maenhaut, E. Vass, Z. Majer, Chirality and the origin of atmospheric humic-like substances. Atmos. Chem. Phys. 2010, 10, 1315.
Chirality and the origin of atmospheric humic-like substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsl2rur0%3D&md5=f138f7e4550f77eec73a160fae28da99CAS |

[13]  N. Havers, P. Burba, J. Lambert, D. Klockow, Spectroscopic characterization of humic-like substances in airborne particulate matter. J. Atmos. Chem. 1998, 29, 45.
Spectroscopic characterization of humic-like substances in airborne particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhvFKqs7c%3D&md5=8d645e8bbff285a0551c5cb9fac04fb1CAS |

[14]  E. R. Graber, Y. Rudich, Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 2006, 6, 729.
Atmospheric HULIS: how humic-like are they? A comprehensive and critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltV2jtLg%3D&md5=015b9e65162d8bc93e165e8fad595c55CAS |

[15]  M. Schumacher, I. Christl, A. C. Scheinost, C. Jacobsen, R. Kretzschmar, Chemical heterogeneity of organic soil colloids investigated by scanning transmission X-ray microscopy and C-1s NEXAFS microspectroscopy. Environ. Sci. Technol. 2005, 39, 9094.
Chemical heterogeneity of organic soil colloids investigated by scanning transmission X-ray microscopy and C-1s NEXAFS microspectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGmtb7J&md5=18aa3044e03d989ce573dfddbcbfa87dCAS |

[16]  J. Lehmann, D. Solomon, J. Kinyangi, L. Dathe, S. Wirick, C. Jacobsen, Spatial complexity of soil organic matter forms at nanometre scales. Nat. Geosci. 2008, 1, 238.
Spatial complexity of soil organic matter forms at nanometre scales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktVCisb0%3D&md5=3a3b245820b61cdd2a0c1b0d4e5a267eCAS |

[17]  J. Kinyangi, D. Solomon, B. I. Liang, M. Lerotic, S. Wirick, J. Lehmann, Nanoscale biogeocomplexity of the organomineral assemblage in soil: Application of STXM microscopy and C 1s-NEXAFS spectroscopy. Soil Sci. Soc. Am. J. 2006, 70, 1708.
Nanoscale biogeocomplexity of the organomineral assemblage in soil: Application of STXM microscopy and C 1s-NEXAFS spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpsl2lsb0%3D&md5=748eda99b11f0c1489dc3f71325a2c3fCAS |

[18]  M. S. Diallo, C. J. Glinka, W. A. Goddard, J. H. Johnson, Characterization of nanoparticles and colloids in aquatic systems 1. Small angle neutron scattering investigations of Suwannee River fulvic acid aggregates in aqueous solutions. J. Nanopart. Res. 2005, 7, 435.
Characterization of nanoparticles and colloids in aquatic systems 1. Small angle neutron scattering investigations of Suwannee River fulvic acid aggregates in aqueous solutions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFWhsL8%3D&md5=0a05eac2dbb39b1466376750d619cd97CAS |

[19]  S. Fuzzi, S. Decesari, M. C. Facchini, E. Matta, M. Mircea, E. Tagliavini, A simplified model of the water soluble organic component of atmospheric aerosols. Geophys. Res. Lett. 2001, 28, 4079.
A simplified model of the water soluble organic component of atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotl2rs74%3D&md5=e0f2d9b22821b3d1de1e9b86b1f7e017CAS |

[20]  S. D. Brooks, P. J. DeMott, S. M. Kreidenweis, Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate. Atmos. Environ. 2004, 38, 1859.
Water uptake by particles containing humic materials and mixtures of humic materials with ammonium sulfate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFChtrs%3D&md5=a687569545fcbd3ce1b6f1e348ff1332CAS |

[21]  M. N. Chan, C. K. Chan, Hygroscopic properties of two model humic-like substances and their mixtures with inorganics of atmospheric importance. Environ. Sci. Technol. 2003, 37, 5109.
Hygroscopic properties of two model humic-like substances and their mixtures with inorganics of atmospheric importance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot12msr0%3D&md5=798c86737e12ff42f9eaacacf63e13f1CAS |

[22]  G. Kiss, E. Tombácz, H.-C. Hansson, Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol. J. Atmos. Chem. 2005, 50, 279.
Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1OnsLw%3D&md5=d7dae4f4234f0178c6fe20370e921072CAS |

[23]  E. Dinar, I. Taraniuk, E. R. Graber, T. Anttila, T. F. Mentel, Y. Rudich, Hygroscopic growth of atmospheric and model humic-like substances. J. Geophys. Res. 2007, 112, D05211.
Hygroscopic growth of atmospheric and model humic-like substances.Crossref | GoogleScholarGoogle Scholar |

[24]  S. Cowen, H. A. Al-Abadleh, DRIFTS studies on the photodegradation of tannic acid as a model for HULIS in atmospheric aerosols. Phys. Chem. Chem. Phys. 2009, 11, 7838.
DRIFTS studies on the photodegradation of tannic acid as a model for HULIS in atmospheric aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVOrsLzL&md5=a7089ba414be87ea402d361cd1f982b6CAS |

[25]  J. Stöhr, NEXAFS Spectroscopy 1992 (Springer-Verlag: New York).

[26]  L. M. Russell, S. F. Maria, S. C. B. Myneni, Mapping organic coatings on atmospheric particles. Geophys. Res. Lett. 2002, 29, 1779.
Mapping organic coatings on atmospheric particles.Crossref | GoogleScholarGoogle Scholar |

[27]  S. F. Maria, L. M. Russell, M. K. Gilles, S. C. B. Myneni, Organic aerosol growth mechanisms and their climate-forcing implications. Science 2004, 306, 1921.
Organic aerosol growth mechanisms and their climate-forcing implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCqtbvM&md5=a3dac204a4f80dad02a2fa4831418c4dCAS |

[28]  A. P. Hitchcock, J. J. Dynes, G. Johansson, J. Wang, G. Botton, Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter. Micron 2008, 39, 741.
Comparison of NEXAFS microscopy and TEM-EELS for studies of soft matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVKku7k%3D&md5=d65ee18bcad4636e4bb4f8ae177beef4CAS |

[29]  J. Raabe, G. Tzvetkov, U. Flechsig, M. Boge, A. Jaggi, B. Sarafimov, M. G. C. Vernooij, T. Huthwelker, H. Ade, D. Kilcoyne, T. Tyliszczak, R. H. Fink, C. Quitmann, PolLux: a new facility for soft x-ray spectromicroscopy at the Swiss Light Source. Rev. Sci. Instrum. 2008, 79, 113704.
PolLux: a new facility for soft x-ray spectromicroscopy at the Swiss Light Source.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjptVWhtw%3D%3D&md5=65dc87a74bebf5b3d30bcb2c3929697cCAS |

[30]  O. Dhez, H. Ade, S. G. Urquhart, Calibrated NEXAFS spectra of some common polymers. J. Electron Spec. Rel. Phen. 2003, 128, 85.
Calibrated NEXAFS spectra of some common polymers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFejsb4%3D&md5=b5f6b23fed5154c62bd6575284606edfCAS |

[31]  C. Jacobsen, S. Wirick, G. Flynn, C. Zimba, Soft X-ray spectroscopy from image sequences with sub-100 nm spatial resolution. J. Microsc. 2000, 197, 173.
Soft X-ray spectroscopy from image sequences with sub-100 nm spatial resolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFahsbs%3D&md5=92aa6b4ac3c3766b63a4dee4af0d495bCAS |

[32]  C. T. Chantler, Theoretical form-factor, attenuation and scattering tabulation for Z=1–92 from E=1–10 Ev to E=0.4–1.0 Mev. J. Phys. Chem. Ref. Data 1995, 24, 71.
Theoretical form-factor, attenuation and scattering tabulation for Z=1–92 from E=1–10 Ev to E=0.4–1.0 Mev.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXls1Okt74%3D&md5=7b94ad73192c3ba60ce4e19c87abc138CAS |

[33]  S. C. B. Myneni, J. T. Brown, G. A. Martinez, W. Meyer-Ilse, Imaging of humic substance macromolecular structures in water and soils. Science 1999, 286, 1335.
Imaging of humic substance macromolecular structures in water and soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsVektbg%3D&md5=d1acce685ceeda3aaed1bf970e5c1c25CAS |

[34]  T. Huthwelker, V. Zelenay, M. Birrer, A. Krepelova, J. Raabe, G. Tzvetkov, M. G. C. Vernooij, M. Ammann, An in situ cell to study phase transitions in individual aerosol particles on a substrate using scanning transmission X-ray microspectroscopy. Rev. Sci. Instrum. 2010, 81, 113706.
An in situ cell to study phase transitions in individual aerosol particles on a substrate using scanning transmission X-ray microspectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M%2FitFCjug%3D%3D&md5=54409763b706e4351eee1f73c5d0ae6dCAS |

[35]  V. Zelenay, M. Ammann, A. Krepelová, M. Birrer, G. Tzvetkov, M. G. C. Vernooij, J. Raabe, T. Huthwelker, Direct observation of water uptake and release in individual submicrometer sized ammonium sulfate and ammonium sulfate/adipic acid particles using X-ray microspectroscopy. J. Aerosol Sci. 2011, 42, 38.
Direct observation of water uptake and release in individual submicrometer sized ammonium sulfate and ammonium sulfate/adipic acid particles using X-ray microspectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2lsw%3D%3D&md5=b9fa774ee23b94a6bcb7870af1399c23CAS |

[36]  R. Hopkins, A. V. Tivanski, B. D. Marten, M. K. Gilles, Chemical bonding and structure of black carbon reference materials and individual carbonaceous atmospheric aerosol. J. Aerosol Sci. 2007, 38, 573.
Chemical bonding and structure of black carbon reference materials and individual carbonaceous atmospheric aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFKntro%3D&md5=9ab9134deba8ece151a27f6d0133584cCAS |

[37]  F. Claret, T. Schafer, J. Brevet, P. E. Reiller, Fractionation of Suwannee River Fulvic Acid and Aldrich Humic Acid on α-Al2O3: spectroscopic evidence. Environ. Sci. Technol. 2008, 42, 8809.
Fractionation of Suwannee River Fulvic Acid and Aldrich Humic Acid on α-Al2O3: spectroscopic evidence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlSqtbbP&md5=7b078e1ca32b5edd61637907b5ae21edCAS |

[38]  M. Schumacher, I. Christl, R. D. Vogt, K. Barmettler, C. Jacobsen, R. Kretzschmar, Chemical composition of aquatic dissolved organic matter in five boreal forest catchments sampled in spring and fall seasons. Biogeochemistry 2006, 80, 263.
Chemical composition of aquatic dissolved organic matter in five boreal forest catchments sampled in spring and fall seasons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtValtbfM&md5=6e2abca6df845bcf6cb45ac42eafd176CAS |

[39]  R. Sutton, G. Sposito, Molecular structure in soil humic substances: the new view. Environ. Sci. Technol. 2005, 39, 9009.
Molecular structure in soil humic substances: the new view.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGmtb7L&md5=427be9301f88d35faee8e0f33c962bb9CAS |

[40]  D. Solomon, J. Lehmann, J. Kinyangi, B. Q. Liang, K. Heymann, L. Dathe, K. Hanley, S. Wirick, C. Jacobsen, Carbon (1s) NEXAFS spectroscopy of biogeochemically relevant reference organic compounds. Soil Sci. Soc. Am. J. 2009, 73, 1817.
Carbon (1s) NEXAFS spectroscopy of biogeochemically relevant reference organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSku7rN&md5=54c3ee91d931be10fdc71b8ec8f27c99CAS |

[41]  A. Braun, Carbon speciation in airborne particulate matter with C (1s) NEXAFS spectroscopy. J. Environ. Monit. 2005, 7, 1059.
Carbon speciation in airborne particulate matter with C (1s) NEXAFS spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCmt7%2FE&md5=44601d887a638916f63dad42b844e341CAS |

[42]  R. Bahadur, L. M. Russell, K. Prather, Composition and morphology of individual combustion, biomass burning, and secondary organic particle types obtained using urban and coastal ATOFMS and STXM-NEXAFS measurements. Aerosol Sci. Technol. 2010, 44, 551.
Composition and morphology of individual combustion, biomass burning, and secondary organic particle types obtained using urban and coastal ATOFMS and STXM-NEXAFS measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1eiurw%3D&md5=d06aaa1543e3837c46c88ab08b2c888bCAS |

[43]  Y. F. Hu, R. K. Xu, J. J. Dynes, R. I. R. Blyth, G. Yu, L. M. Kozak, P. M. Huang, Coordination nature of aluminum (oxy)hydroxides formed under the influence of tannic acid studied by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 2008, 72, 1959.
Coordination nature of aluminum (oxy)hydroxides formed under the influence of tannic acid studied by X-ray absorption spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Orur0%3D&md5=a8b0b8610f89213042973d6348a7459fCAS |

[44]  S. Myneni, Y. Luo, L. Å. Näslund, M. Cavalleri, L. Ojamäe, H. Ogasawara, A. Pelmenschikov, P. Wernet, P. Väterlein, C. Heske, Z. Hussain, L. G. M. Pettersson, A. Nilsson, Spectroscopic probing of local hydrogen-bonding structures in liquid water. J. Phys. Condens. Matter 2002, 14, L213.
Spectroscopic probing of local hydrogen-bonding structures in liquid water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFWjsLg%3D&md5=04f763f5d5fd4b71da44bfee4e17dc04CAS |

[45]  L. Å. Näslund, J. Lüning, Y. Ufuktepe, H. Ogasawara, P. Wernet, U. Bergmann, L. G. M. Pettersson, A. Nilsson, X-ray absorption spectroscopy measurements of liquid water. J. Phys. Chem. B 2005, 109, 13835.
X-ray absorption spectroscopy measurements of liquid water.Crossref | GoogleScholarGoogle Scholar |

[46]  P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L. Å. Näslund, T. K. Hirsch, L. Ojamäe, P. Glatzel, L. G. M. Pettersson, A. Nilsson, The structure of the first coordination shell in liquid water. Science 2004, 304, 995.
The structure of the first coordination shell in liquid water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVCgs7o%3D&md5=f794c3a12c1f8c4a46f6e77ee008f86aCAS |

[47]  M. Cavalleri, H. Ogasawara, L. G. M. Pettersson, A. Nilsson, The interpretation of X-ray absorption spectra of water and ice. Chem. Phys. Lett. 2002, 364, 363.
The interpretation of X-ray absorption spectra of water and ice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsVaqsLs%3D&md5=0ba3ebb2d16e78a2681e1155d94a2b9fCAS |

[48]  G. Tzvetkov, B. Graf, P. Fernandes, A. Fery, F. Cavalieri, G. Paradossi, R. H. Fink, In situ characterization of gas-filled microballoons using soft X-ray microspectroscopy. Soft Matter 2008, 4, 510.
In situ characterization of gas-filled microballoons using soft X-ray microspectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlCisro%3D&md5=309eca5bde0510fefc1797d664ba5cefCAS |

[49]  M. Shiraiwa, M. Ammann, T. Koop, U. Pöschl, Gas uptake and chemical aging of semisolid organic aerosol particles. Proc. Natl. Acad. Sci. USA 2011, 108, 11003.
Gas uptake and chemical aging of semisolid organic aerosol particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptV2ht7o%3D&md5=60aaae82bc9456aa0ce54287479d859dCAS |

[50]  B. Zobrist, C. Marcolli, D. A. Pedernera, T. Koop, Do atmospheric aerosols form glasses? Atmos. Chem. Phys. 2008, 8, 5221.
Do atmospheric aerosols form glasses?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCntbfL&md5=d491eb5a879c9a62d25fbf42ac54e481CAS |

[51]  E. Dinar, I. Taraniuk, E. R. Graber, S. Katsman, T. Moise, T. Anttila, T. F. Mentel, Y. Rudich, Cloud condensation nuclei properties of model and atmospheric HULIS. Atmos. Chem. Phys. 2006, 6, 2465.
Cloud condensation nuclei properties of model and atmospheric HULIS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XovVWntLc%3D&md5=341c35242a0af8728b6b9498a79e064fCAS |