Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Fluvial contributions of nutrient salts, dissolved trace elements and organic carbon to the sea by pristine temperate rivers (SW Europe)

P. Bernárdez A B D , N. Ospina-Alvarez A , M. Caetano C and R. Prego A
+ Author Affiliations
- Author Affiliations

A Marine Research Institute (IIM-CSIC), Eduardo Cabello, 6, E-36208 Vigo, Spain.

B Marine Geosciencies Department, University of Vigo, Fonte das Abilleiras s/n, E-36310 Vigo, Spain.

C Instituto Português do Mar e da Atmosfera (IPMA), Division of Environmental Oceanography and Bioprosepction, Avenida Brasília 6, PT-1449-006 Lisbon, Portugal.

D Corresponding author. Email: pbernardez@uvigo.es

Environmental Chemistry 10(1) 42-53 https://doi.org/10.1071/EN12123
Submitted: 23 August 2012  Accepted: 11 January 2013   Published: 22 February 2013

Environmental context. We report the baseline levels of dissolved nutrients, organic matter and metals in the main temperate rivers draining the three Northern Galicia rias. Because the rivers are pristine, these rias are little affected by anthropogenic inputs, and their properties reflect the lithological characteristics of the rivers’ watersheds. Useful information in the development of European and global initiatives for assessing anthropogenic inputs to estuarine, coastal and open-sea environments has been provided.

Abstract. A summary of the water characteristics of the rivers Sor, Mera and Landro that drain into the Northern Galician Rias (NW Iberian Peninsula) is presented. The analysis was based on fortnightly monitoring during 2008, for major and minor chemical elements in the dissolved phase (Al, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, U, V, Zn), nutrients (nitrate, nitrite, ammonium, phosphate, silicate), suspended particulate matter, chlorophyll-a and tracers of water quality chemistry (dissolved inorganic nitrogen and carbon). The data cover rivers not urban, agriculturally or industrially affected. Continental inputs of the material via rivers into the Northern Galician Rias were measured and annual fluxes of the dissolved chemical elements to the rias were calculated. In spite of the high variability in water flow, this study provides a good estimate of the overall amounts of nutrients and dissolved elements discharged to pristine ria systems.

Additional keywords: DOC, Northern Galician Rias, NW Iberian Peninsula.


References

[1]  D. B. Nedwell, L. F. Dong, A. Sage, G. J. C. Underwood, Variations of the nutrients loads to the mainland UK estuaries: Correlation with catchment areas, urbanization and coastal Eutrophication Estuar. Coast. Shelf Sci. 2002, 54, 951.
Variations of the nutrients loads to the mainland UK estuaries: Correlation with catchment areas, urbanization and coastal EutrophicationCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsFartLs%3D&md5=76b4f0fd980f8e07932c36bc7cd53d45CAS |

[2]  P. H. Monbet, Dissolved and particulate fluxes of copper through the Morlaix River estuary (Brittany, France): mass balance in a small estuary with strong agricultural catchment Mar. Pollut. Bull. 2004, 48, 78.
Dissolved and particulate fluxes of copper through the Morlaix River estuary (Brittany, France): mass balance in a small estuary with strong agricultural catchmentCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisFKhsQ%3D%3D&md5=58452979cccdd026f7b01de0a0cdb179CAS |

[3]  M. Masson, J. Schäfer, G. Blanc, A. Pierre, Seasonal variations and annual fluxes of arsenic in the Garonne, Dordogne and Isle Rivers, France Sci. Total Environ. 2007, 373, 196.
Seasonal variations and annual fluxes of arsenic in the Garonne, Dordogne and Isle Rivers, FranceCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFOntg%3D%3D&md5=a514d4a7e6e083f3691cf1c5b666f2c4CAS |

[4]  M. Meybeck, R. Helmer, The quality of rivers – from pristine stage to global pollution Palaeogeogr. Palaeocl. 1989, 75, 283.
The quality of rivers – from pristine stage to global pollutionCrossref | GoogleScholarGoogle Scholar |

[5]  J. Zhang, W. W. Huang, Dissolved trace-metals in the Huanghe-the most turbid large river in the world Water Res. 1993, 27, 1.
Dissolved trace-metals in the Huanghe-the most turbid large river in the worldCrossref | GoogleScholarGoogle Scholar |

[6]  B. T. Hart, T. Hines, Trace elements in rivers, in Trace Elements in Natural Waters (Ed B Salbu) 1995, pp. 203–221 (CRC Press: Boca Raton, FL).

[7]  F. Elbaz-Poulichet, P. Seyler, L. Maurice-Bourgoin, J. L. Guyot, C. Dupuy, Trace element geochemistry in the upper Amazon drainage basin (Bolivia) Chem. Geol. 1999, 157, 319.
Trace element geochemistry in the upper Amazon drainage basin (Bolivia)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFCrsrY%3D&md5=087f8f0da8e5996cbafebed7b8049a87CAS |

[8]  J. Gaillardet, J. Viers, B. Dupré, Trace elements in river waters, in Treatise on Geochemistry Vol. 5 (Eds HD Holland, KK Turekian) 2005, pp. 225–272 (Elsevier: Amsterdam).

[9]  M. Meybeck, Dissolved and suspended matter carried by rivers: composition, time and space variations and world balance, in Interactions between Sediments and Fresh Water (Eds H. L. Golterman, W. Junk) 1977 pp. 25–32 (Springer: The Hague, the Netherlands).

[10]  J. M. Martin, M. Meybeck, Elemental mass-balance of material carried by major world rivers Mar. Chem. 1979, 7, 173.
Elemental mass-balance of material carried by major world riversCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksVChs7k%3D&md5=8d40309851a1f3f8028b5694d4200246CAS |

[11]  C. Neal, A. J. Robson, A summary of river water quality data collected within the Land–Ocean Interaction Study: core data for eastern UK rivers draining to the North Sea Sci. Total Environ. 2000, 251–252, 585.
A summary of river water quality data collected within the Land–Ocean Interaction Study: core data for eastern UK rivers draining to the North SeaCrossref | GoogleScholarGoogle Scholar |

[12]  M. Olías, C. R. Cánovas, J. M. Nieto, A. M. Sarmiento, Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain) Appl. Geochem. 2006, 21, 1733.
Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain)Crossref | GoogleScholarGoogle Scholar |

[13]  A. Avilés, F. X. Niell, The control of a small dam in nutrient inputs to a hypertrophic estuary in a Mediterranean climate Water Air Soil Pollut. 2007, 180, 97.
The control of a small dam in nutrient inputs to a hypertrophic estuary in a Mediterranean climateCrossref | GoogleScholarGoogle Scholar |

[14]  S. Falco, L. F. Niencheski, M. Rodilla, I. Romero, J. G. del Rio, J. P. Sierra, C. Mosso, Nutrient flux and budget in the Ebro estuary Estuar. Coast. Shelf Sci. 2010, 87, 92.
Nutrient flux and budget in the Ebro estuaryCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVartLk%3D&md5=70571043cf29cd19a7013ef8082758b7CAS |

[15]  F. J. Río-Barja, F. Rodríguez-Lestegás, Os Ríos Galegos 1992 (Consello da Cultura Galega: Santiago de Compostela, Spain).

[16]  A. F. Ríos, M. A. Nombela, F. F. Pérez, G. Rosón, F. Fraga, Calculation of runoff to an estuary Ria de Vigo Sci. Mar. 1992, 56, 29.

[17]  M. Perez-Arlucea, M. Filgueira, M. Freijido, G. Mendez, Parametros morfometricos e hidrologicos de las cuencas de drenaje y rios tributarios a la ria de Vigo. Estimacion de las variaciones anuales en las cargas en suspension y en disolución Journal of Iberian Geology 2001, 26, 171.

[18]  M. Perez-Arlucea, G. Mendez, F. Clemente, M. Nombela, B. Rubio, M. Filgueira, Hydrology, sediment yield, erosion and sedimentation rates in the estuarine environment of the Ria de Vigo, Galicia, Spain J. Mar. Syst. 2005, 54, 209.
Hydrology, sediment yield, erosion and sedimentation rates in the estuarine environment of the Ria de Vigo, Galicia, SpainCrossref | GoogleScholarGoogle Scholar |

[19]  J. Vergara, R. Prego, Estimación de los aportes fluviales de nitrato, fosfato y silicato hacia las rías gallegas, in Procesos biogeoquímicos en sistemas costeros hispano-lusos (Eds R. Prego, J. M. Fernández) 1997, pp. 33–40 (Consejo Superior de Investigaciones Científicas: Pontevedra, Spain).

[20]  A. Cobelo-García, R. Prego, A. Labandeira, Land inputs of trace metals, major elements, particulate organic carbon and suspended solids to an industrial coastal bay of the NE Atlantic Water Res. 2004, 38, 1753.
Land inputs of trace metals, major elements, particulate organic carbon and suspended solids to an industrial coastal bay of the NE AtlanticCrossref | GoogleScholarGoogle Scholar |

[21]  J. Gago, X. A. Alvarez-Salgado, M. Nieto-Cid, S. Brea, S. Piedracoba, Continental inputs of C, N, P and Si species to the Ria de Vigo (NW Spain) Estuar. Coast. Shelf Sci. 2005, 65, 74.
Continental inputs of C, N, P and Si species to the Ria de Vigo (NW Spain)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCnt7rE&md5=7861c4db48ae798358cc16a2d4e58c7eCAS |

[22]  A. V. Filgueiras, R. Prego, Biogeochemical fluxes of iron from rainwater, rivers and sewage to a Galician Ria (NW Iberian Peninsula). Natural versus anthropogenic contributions Biogeochemistry 2007, 86, 319.
Biogeochemical fluxes of iron from rainwater, rivers and sewage to a Galician Ria (NW Iberian Peninsula). Natural versus anthropogenic contributionsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1OksrbI&md5=c199ecdb3aec454e83d74358b0174da5CAS |

[23]  J. Santos-Echeandía, L. M. Laglera, R. Prego, C. M. G. van den Berg, Copper speciation in estuarine waters by forward and reverse titrations Mar. Chem. 2008, 108, 148.
Copper speciation in estuarine waters by forward and reverse titrationsCrossref | GoogleScholarGoogle Scholar |

[24]  E. Torre-Enciso, Estado actual del conocimiento de las rias gallegas, in Homenaxe a R. Otero Pedrayo 1958, pp. 237–250 (Editorial Galaxia: Vigo, Spain).

[25]  I. Díez, A. Secilla, A. Santolaria, J. M. Gorostiaga, The north coast of Spain, in Seas at the Millennium: an Environmental Evaluation: 1. Regional chapters: Europe, The Americas and West Africa (Ed. C. Sheppard) 2000, pp. 135–150 (Pergamon: Amsterdam).

[26]  I. Alvarez, N. Ospina-Alvarez, Y. Pazos, M. deCastro, P. Bernárdez, M. J. Campos, J. L. Gomez-Gesteira, M. T. Alvarez-Ossorio, M. Varela, M. Gomez-Gesteira, R. Prego, A winter upwelling event in the Northern Galician Rias: frequency and oceanographic implications Estuar. Coast. Shelf Sci. 2009, 82, 573.
A winter upwelling event in the Northern Galician Rias: frequency and oceanographic implicationsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltFOrsbY%3D&md5=d791b3a777880e21a9196cbca8e5e676CAS |

[27]  M. Gomez-Gesteira, C. Moreira, I. Alvarez, M. de Castro, Ekman transport along the Galician coast (northwest Spain) calculated from forecasted winds J. Geophys. Res., C, Oceans 2006, 111, C10005.
Ekman transport along the Galician coast (northwest Spain) calculated from forecasted windsCrossref | GoogleScholarGoogle Scholar |

[28]  Augas de Galicia 2011 (Consellería de Medio Ambiente, Territorio e Infraestructuras: Xunta de Galicia, Spain). Available at http://augasdegalicia.xunta.es//gl/7.2.htm [Verified 31 January 2013].

[29]  A. Aminot, Dosage de l’oxygène dissous, in Manuel des Analysses Chimiques en Milieu Marin (Eds A. Aminot, M. Chaussepied) 1983, pp. 75–92 (CNEXO: Brest, France).

[30]  J. Kobayashi, Silica in freshwater and estuaries, in Chemical Environment in the Aquatic Habitat. Biosphere Programme Symposium, 10–16 October 1966, Amsterdam and Nieuwersluis (Eds H. L. Golterman, R. S. Clymo) 1966, pp. 41–55. (Koninklijke Nederlandse Akademie Van Wetenschappen: Amsterdam).

[31]  H. P. Hansen, F. Koroleff, Determination of nutrients, in Methods of Seawater Analysis (Eds K Grasshoff, K Kremling, M Ehrhardt) 1999, pp. 159–226 (Wiley-VCH: Weinheim).

[32]  J. Neveux, M. Panouse, Spectrofluorometric determination of chlorophylls and pheophytins Arch. Hydrobiol. 1987, 109, 567.
| 1:CAS:528:DyaL2sXlslWku7o%3D&md5=fd8a5d6c9a069c9c9e8cd8c87ccbd799CAS |

[33]  Protocols for the joint global ocean flux study (JGOFS) core measurements, Manuals and guides 19 1994 (SCOR, Scientific Comite of Oceanic Research). Available at http://ijgofs.whoi.edu/Publications/Report_Series/JGOFS_19.pdf [Verified 8 February 2013].

[34]  X. A. Álvarez-Salgado, A. E. J. Miller, Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurements Mar. Chem. 1998, 62, 325.
Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurementsCrossref | GoogleScholarGoogle Scholar |

[35]  R. Thomas, M. Meybeck, The use of particulate material, in Water quality assessments (Ed D Chapman), 1992, pp. 121–170 (Chapman & Hall: London).

[36]  D. H. Loring, R. T. T. Rantala, Manual for the geochemical analyses of marine sediments and suspended particulate matter Earth Sci. Rev. 1992, 32, 235.
Manual for the geochemical analyses of marine sediments and suspended particulate matterCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvFWlurY%3D&md5=e47a6034b7dbe7fbf78888aa18315a59CAS |

[37]  C. Neal, C. J. Smith, H. A. JeVery, H. P. Jarvie, A. J. Robson, Trace element concentrations in the major rivers entering the Humber estuary, NE England J. Hydrol. 1996, 182, 37.
Trace element concentrations in the major rivers entering the Humber estuary, NE EnglandCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkslGqsbY%3D&md5=920382bb9ff39a72bd78d410dca6de7eCAS |

[38]  K. Grasshoff, Filtration and storage, in Methods of Seawater Analysis (Eds K Grasshoff, K Kremling, M Ehrhardt) 1999, pp. 21–30 (Wiley-VCH: Weinheim).

[39]  Standard methods for the examination of water and wastewater, 20th edn 1995 (American Public Health Association: Baltimore, MD).

[40]  B. Quémerais, D. Cossa, B. Rondeau, T. T. Pham, P. Gagnon, B. Fortin, Sources and fluxes of mercury in the St Lawrence river Environ. Sci. Technol. 1999, 33, 840.
Sources and fluxes of mercury in the St Lawrence riverCrossref | GoogleScholarGoogle Scholar |

[41]  M. Meybeck, G. Friedrich, R. Thomas, D. Chapman, Rivers, in Water Quality Assessments (Ed. D. Chapman) 1992 pp. 239–315 (Chapman & Hall: London).

[42]  B. W. Webb, J. M. Phillips, D. E. Walling, I. G. Littlewood, C. D. Watts, G. J. L. Leeks, Load estimation methodologies for British rivers and their relevance to the LOIS RACS(R) programme Sci. Total Environ. 1997, 194–195, 379.
Load estimation methodologies for British rivers and their relevance to the LOIS RACS(R) programmeCrossref | GoogleScholarGoogle Scholar |

[43]  B. W. Webb, J. M. Phillips, D. E. Walling, A new approach to deriving ‘best-estimate’ chemical fluxes for rivers draining the LOIS study area Sci. Total Environ. 2000, 251–252, 45.
A new approach to deriving ‘best-estimate’ chemical fluxes for rivers draining the LOIS study areaCrossref | GoogleScholarGoogle Scholar |

[44]  R. Quilbé, A. N. Rousseau, M. Duchemin, A. Poulin, G. Gangbazo, J. P. Villeneuve, Selecting a calculation method to estimate sediment and nutrient loads in streams: application to the Beaurivage River (Quebec, Canada) J. Hydrol. 2006, 326, 295.
Selecting a calculation method to estimate sediment and nutrient loads in streams: application to the Beaurivage River (Quebec, Canada)Crossref | GoogleScholarGoogle Scholar |

[45]  P. J. Johnes, Uncertainties in annual riverine phosphorus load estimation: impact of load estimation methodology, sampling frequency, baseflow index and catchment population density J. Hydrol. 2007, 332, 241.
Uncertainties in annual riverine phosphorus load estimation: impact of load estimation methodology, sampling frequency, baseflow index and catchment population densityCrossref | GoogleScholarGoogle Scholar |

[46]  S. D. Preston, V. J. Bierman, S. E. Silliman, An evaluation of methods for the estimation of tributary mass loads Water Resour. Res. 1989, 25, 1379.
An evaluation of methods for the estimation of tributary mass loadsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmtFyqtbo%3D&md5=8f623cdfa1f3969e64142e4c2b822b01CAS |

[47]  O. Pazos, M. A. Nombela, F. Vilas, Continental contribution of suspended sediment to an estuary: Ria de Vigo Sci. Mar. 2000, 64, 295.

[48]  C. Neal, J. Hilton, A. J. Wade, M. Neal, H. Wickham, Chlorophyll-a in the rivers of eastern England Sci. Total Environ. 2006, 365, 84.
Chlorophyll-a in the rivers of eastern EnglandCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvFyku7c%3D&md5=c7e212249149ce91ba40ea0f0b15e049CAS |

[49]  G. Esser, G. H. Kohlmaier, in Biogeochemistry of Major World Rivers (Eds E. T. Degens, S. Kempe, J. E. Richey) 1991, pp. 169–211 (Wiley: Chichester, UK).

[50]  R. Prego, J. Vergara, Nutrient fluxes to the Bay of Biscay from Cantabrian rivers (Spain) Oceanol. Acta 1998, 21, 271.
Nutrient fluxes to the Bay of Biscay from Cantabrian rivers (Spain)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsFyisL4%3D&md5=011b11ed513d09a761c71e9cc5015684CAS |

[51]  R. Salminen (Ed.) Geochemical Atlas of Europe. Part 1: Background Information, Methodology and Maps 2005 (Geological Survey of Finland: Espoo). Available at http://weppi.gtk.fi/publ/foregsatlas/ [Verified 8 February 2013].

[52]  T. De Vos, W. Tarvainen (Eds) Geochemical Atlas of Europe. Part 2: Interpretation of Geochemical Maps, Additional Tables, Figures, Maps and Related Publications 2006 (Geological Survey of Finland: Espoo). Available at http://weppi.gtk.fi/publ/foregsatlas/part2.php [Verified 31 January 2013].

[53]  D. L. Correll, Phosphorus: A rate limiting nutrient in surface waters Poult. Sci. 1999, 78, 674.
| 1:STN:280:DyaK1M3ktl2luw%3D%3D&md5=176707263fe8cd63901267aa81246818CAS |

[54]  R. Prego, R. Bao, R. Howland, The biogeochemical cycling of dissolved silicate in a Galician Ría Ophelia 1995, 42, 301.
The biogeochemical cycling of dissolved silicate in a Galician RíaCrossref | GoogleScholarGoogle Scholar |

[55]  C. Guieu, W. W. Huang, J. M. Martin, Y. Y. Yong, Outflow of trace metals into the Laptev Sea by the Lena River Mar. Chem. 1996, 53, 255.
Outflow of trace metals into the Laptev Sea by the Lena RiverCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkslGntrg%3D&md5=7663df7c3fbe39fab03658ce9b9a75b0CAS |

[56]  W. Admiraal, G. M. J. Tubbing, L. Breebaart, Effects of phytoplankton on metal partitioning in the lower River Rhine Water Res. 1995, 29, 941.
Effects of phytoplankton on metal partitioning in the lower River RhineCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjs1WltLs%3D&md5=fea2e826c31d324ecec81908942460fdCAS |

[57]  W. S. Moore, Amazon and Mississippi River concentrations of uranium, thorium and radium isotopes Earth Planet. Sci. Lett. 1967, 2, 231.
Amazon and Mississippi River concentrations of uranium, thorium and radium isotopesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktlKhur4%3D&md5=9daf094f1ae686bf9b46eb6ab677f397CAS |

[58]  Memoria y mapa minero-metalogénico de Galicia 1 : 400000 1982 (Instituto Geológico y Minero de España, Dirección de recursos minerales, Servicio de Publicaciones del Ministerio de Industria y Energía: Madrid).

[59]  A. M. Shiller, E. A. Boyle, Dissolved vanadium in rivers and estuaries Earth Planet. Sci. Lett. 1987, 86, 214.
Dissolved vanadium in rivers and estuariesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXotFGhsA%3D%3D&md5=c212366af74ebb730a49d7820765fd9eCAS |

[60]  A. M. Shiller, L. J. Mao, Dissolved vanadium in rivers: effects of silicate weathering Chem. Geol. 2000, 165, 13.
Dissolved vanadium in rivers: effects of silicate weatheringCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1eqsr8%3D&md5=a701c69e83a5ebe9437075e5780b3e09CAS |

[61]  J. M. Martin, M. H. Cotte, M. Dai, W. W. Huang, A. J. Thomas, D. Cossa, J. Sanjuan, M. Bourlat, D. M. Thouar, Enrichment of trace elements in European coastal waters. Ocean Margin exchange (OMEX) – first annual report 1994 (Universite Libre de Bruxelles: Brussels).

[62]  F. Guitián-Ojea, Atlas Geoquímico de Galicia 1992 (Dirección Xeral de Industria: Xunta de Galicia).

[63]  R. Prego, A. Cobelo-Garcia, Twentieth century overview of heavy metals in the Galician Rias (NW Iberian Peninsula) Environ. Pollut. 2003, 121, 425.
Twentieth century overview of heavy metals in the Galician Rias (NW Iberian Peninsula)Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlWjsLo%3D&md5=bbcd898abb24b1cd69d51d5891aba79bCAS |

[64]  R. M. Vogel, J. R. Stedinger, R. P. Hooper, Discharge indices for water quality loads Water Resour. Res. 2003, 39, 1273.
Discharge indices for water quality loadsCrossref | GoogleScholarGoogle Scholar |

[65]  R. A. Wheatcroft, M. A. Goni, J. A. Hatten, G. B. Pasternack, J. A. Warrick, The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems Limnol. Oceanogr. 2010, 55, 161.
The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systemsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVSgtLg%3D&md5=c351a6ae773b49a00fd81b44f0affe3eCAS |

[66]  L. Klonsky, RM vogel effective measures of ‘effective’ discharge J. Geol. 2011, 119, 1.
RM vogel effective measures of ‘effective’ dischargeCrossref | GoogleScholarGoogle Scholar |

[67]  A. Cobelo-García, R. Prego, Heavy metal sedimentary record in a Galician Ria (NW Spain): background values and recent contamination Mar. Pollut. Bull. 2003, 46, 1253.
Heavy metal sedimentary record in a Galician Ria (NW Spain): background values and recent contaminationCrossref | GoogleScholarGoogle Scholar |

[68]  N. Ospina-Alvarez, R. Prego, I. Álvarez, M. deCastro, M. T. Álvarez-Ossorio, Y. Pazos, M. J. Campos, P. Bernárdez, C. García-Soto, M. Gómez-Gesteira, M. Varela, Oceanographical patterns during a summer upwelling-downwelling event in the Northern Galician Rias. Comparison with the whole Ria system (NW of Iberian Peninsula) Cont. Shelf Res. 2010, 30, 1362.
Oceanographical patterns during a summer upwelling-downwelling event in the Northern Galician Rias. Comparison with the whole Ria system (NW of Iberian Peninsula)Crossref | GoogleScholarGoogle Scholar |