Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Molecular composition of urban organic aerosols on clear and hazy days in Beijing: a comparative study using FT-ICR MS

Bin Jiang A , Bin Yu Kuang B , Yongmei Liang A C , Jingyi Zhang A , X. H. Hilda Huang B , Chunming Xu A , Jian Zhen Yu B C and Quan Shi A C

A State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China.

B Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

C Corresponding authors. Email: ymliang@cup.edu.cn; chjianyu@ust.hk; sq@cup.edu.cn

Environmental Chemistry 13(5) 888-901 https://doi.org/10.1071/EN15230
Submitted: 4 November 2015  Accepted: 30 May 2016   Published: 27 July 2016

Environmental context. China has been experiencing severe particulate pollution and frequent haze episodes in recent years. We compare the molecular composition of urban organic aerosols on clear and hazy days in Beijing by high-resolution mass spectrometry. The comparative study shows that oxidation, sulfation and nitrification processes actively involve precursors of anthropogenic origin in the Beijing polluted urban atmosphere.

Abstract. Haze has frequently affected many cities and threatened human health in China. Detailed knowledge of the chemical composition of secondary organic aerosol provides fundamental information in the study of the formation mechanism of haze and its adverse effects on human health. In our work, dichloromethane and water extracts of ambient aerosols collected on hazy and clear days in Beijing were characterised by negative-ion electrospray ionisation and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Formulae in four elemental compositional groups, namely CHOS, CHONS, CHO and CHON, were identified relying on the ultrahigh resolution and mass accuracy of FT-ICR MS. Significantly more compounds were detected and the peaks were much more intense in the hazy day samples, especially for the CHOS, CHONS and CHON formula groups. Organosulfates (OS) and nitrooxy-organosulfates (nitrooxy OS) were the major forms of CHOS and CHONS formulae respectively, and their numbers more than tripled on the hazy days. Under the severely polluted conditions in Beijing, the compositional distribution of the OS and nitrooxy OS exhibited distinct features such as intense peaks of low double-bond equivalent (DBE) (DBE = 0, 1 for OS and DBE = 1, 2 for nitrooxy OS) and low degree oxidation, of medium DBE (DBE = 2, 3 for OS and DBE = 3, 4 for nitrooxy OS), and of high DBE (DBE ≥ 4 for OS and DBE ≥ 5 for nitrooxy OS). The likely respective candidates for these could be aliphatic OS having a low degree of oxidation, biogenic OS and many aromatics and polycyclic aromatic hydrocarbon (PAH)-derived OS. The CHON formulae observed on hazy days were double those on clear days and had higher DBE values and larger O/N ratios. Slightly more CHO compounds were detected in the hazy-day samples and they had higher DBE values and more oxygen atoms. The comparative study suggests that oxidation, sulfation and nitrification processes actively involve precursors of anthropogenic origin in the Beijing polluted urban atmosphere.

Additional keywords: haze, nitrification, organosulfates, secondary organic aerosol, sulfation.


References

[1]  Y. L. Sun, G. S. Zhuang, A. H. Tang, Y. Wang, Z. S. An, Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ. Sci. Technol. 2006, 40, 3148.
Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing.CrossRef | 1:CAS:528:DC%2BD28XjtlSisbs%3D&md5=ace2f61bdcbe57b9d069614a9cbd68aeCAS | open url image1

[2]  J. H. Tan, J. C. Duan, K. B. He, Y. L. Ma, F. K. Duan, Y. Chen, J. M. Fu, Chemical characteristics of PM2.5 during a typical haze episode in Guangzhou. J. Environ. Sci. 2009, 21, 774.
Chemical characteristics of PM2.5 during a typical haze episode in Guangzhou.CrossRef | 1:CAS:528:DC%2BD1MXosVenu70%3D&md5=fe2aeff95be4cb6da2a0fc4b036fce1aCAS | open url image1

[3]  L. X. Yang, D. C. Wang, S. H. Cheng, Z. Wang, Y. Zhou, X. H. Zhou, W. X. Wang, Influence of meteorological conditions and particulate matter on visual range impairment in Jinan, China. Sci. Total Environ. 2007, 383, 164.
Influence of meteorological conditions and particulate matter on visual range impairment in Jinan, China.CrossRef | 1:CAS:528:DC%2BD2sXnslGisrc%3D&md5=44ebb17a588115a87af110886b2634c1CAS | 17570464PubMed | open url image1

[4]  A. K. Yadav, K. Kumar, M. P. Ambha Kasim, Singh, S. K. Parida, M. Sharan, Visibility and incidence of respiratory diseases during the 1998 haze episode in Brunei Darussalam. Pure Appl. Geophys. 2003, 160, 265.
Visibility and incidence of respiratory diseases during the 1998 haze episode in Brunei Darussalam.CrossRef | open url image1

[5]  W. L. Chameides, H. Yu, S. C. Liu, M. Bergin, X. Zhou, L. Mearns, G. Wang, C. S. Kiang, R. D. Saylor, C. Luo, Y. Huang, A. Steiner, F. Giorgi, Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls? Proc. Natl. Acad. Sci. USA 1999, 96, 13626.
Case study of the effects of atmospheric aerosols and regional haze on agriculture: an opportunity to enhance crop yields in China through emission controls?CrossRef | 1:CAS:528:DyaK1MXns1OqsLo%3D&md5=f7bb6675c099845242491192c057612aCAS | 10570123PubMed | open url image1

[6]  K. Okada, M. Ikegami, Y. Zaizen, Y. Makino, J. B. Jensen, J. L. Gras, The mixture state of individual aerosol particles in the 1997 Indonesian haze episode. J. Aerosol Sci. 2001, 32, 1269.
The mixture state of individual aerosol particles in the 1997 Indonesian haze episode.CrossRef | 1:CAS:528:DC%2BD3MXmtFWqu7k%3D&md5=1f697ef988b5ecd435fb86b3d038619dCAS | open url image1

[7]  B. A. Schichtel, R. B. Husar, S. R. Falke, W. E. Wilson, Haze trends over the United States, 1980–1995. Atmos. Environ. 2001, 35, 5205.
Haze trends over the United States, 1980–1995.CrossRef | 1:CAS:528:DC%2BD3MXmvVGgtb8%3D&md5=049e6dfa0bfe985121114a8dc4e1c009CAS | open url image1

[8]  L. Y. Lai, R. Sequeira, Visibility degradation across Hong Kong: its components and their relative contributions. Atmos. Environ. 2001, 35, 5861.
Visibility degradation across Hong Kong: its components and their relative contributions.CrossRef | 1:CAS:528:DC%2BD3MXosFCqsLg%3D&md5=3a90ef94aa369af82a1ccd043662268aCAS | open url image1

[9]  J. G. Watson, Visibility: science and regulation. J. Air. Waste Manag. 2002, 52, 628.
Visibility: science and regulation.CrossRef | open url image1

[10]  J. H. Tan, J. C. Duan, D. H. Chen, X. H. Wang, S. J. Guo, X. H. Bi, G. Y. Sheng, K. B. He, J. M. Fu, Chemical characteristics of haze during summer and winter in Guangzhou. Atmos. Res. 2009, 94, 238.
Chemical characteristics of haze during summer and winter in Guangzhou.CrossRef | 1:CAS:528:DC%2BD1MXhtVOntbjJ&md5=11ebac4f6c8c101c13cfa1f90824c3b0CAS | open url image1

[11]  S. H. Cheng, L. X. Yang, X. H. Zhou, L. K. Xue, X. M. Gao, Y. Zhou, W. X. Wang, Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmos. Environ. 2011, 45, 4631.
Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China.CrossRef | 1:CAS:528:DC%2BC3MXpt1ahtrc%3D&md5=c565ec18e1eea0b34ce57f2b0dc0325eCAS | open url image1

[12]  J. H. Tan, S. J. Guo, Y. L. Ma, J. C. Duan, Y. Cheng, K. B. He, F. M. Yang, Characteristics of particulate PAHs during a typical haze episode in Guangzhou, China. Atmos. Res. 2011, 102, 91.
Characteristics of particulate PAHs during a typical haze episode in Guangzhou, China.CrossRef | 1:CAS:528:DC%2BC3MXht1Srs7vM&md5=e1d84ec8f343bd4f7e06b95aa24e421fCAS | open url image1

[13]  H. S. Kim, H. Jong-Bae, K. H. Philip, T. M. Holsen, S. M. Yi, Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea, in 2003 and 2004. Atmos. Environ. 2007, 41, 6762.
Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea, in 2003 and 2004.CrossRef | 1:CAS:528:DC%2BD2sXhtVKrurbK&md5=014162a0fc4315b7cd4f33affd5aa6c0CAS | open url image1

[14]  M. R. Bin Abas, N. A. Rahman, M. J. Nymj Omar, M. J. Maah, A. AbuSamah, D. R. Oros, A. Otto, B. R. T. Simoneit, Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia. Atmos. Environ. 2004, 38, 4223.
Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia.CrossRef | open url image1

[15]  H. X. Lü, Q. Y. Cai, S. Wen, Y. G. Chi, S. J. Guo, G. Y. Sheng, J. M. Fu, B. Antizar-Ladislao, Carbonyl compounds in the ambient air of hazy days and clear days in Guangzhou, China. Atmos. Res. 2009, 94, 363.
Carbonyl compounds in the ambient air of hazy days and clear days in Guangzhou, China.CrossRef | open url image1

[16]  Q. Z. Meng, S. X. Fan, J. B. He, J. Zhang, Y. Sun, Y. Zhang, F. Zu, Particle size distribution and characteristics of polycyclic aromatic hydrocarbons during a heavy haze episode in Nanjing, China. Particuology 2015, 18, 127.
Particle size distribution and characteristics of polycyclic aromatic hydrocarbons during a heavy haze episode in Nanjing, China.CrossRef | 1:CAS:528:DC%2BC2cXhtVGgs77L&md5=e971cf7253fde33c403a06570e691060CAS | open url image1

[17]  S. Guo, M. Hu, M. L. Zamora, J. F. Peng, D. J. Shang, J. Zheng, Z. F. Du, Z. Wu, M. Shao, L. M. Zeng, M. J. Molina, R. Y. Zhang, Elucidating severe urban haze formation in China. Proc. Natl. Acad. Sci. USA 2014, 111, 17373.
Elucidating severe urban haze formation in China.CrossRef | 1:CAS:528:DC%2BC2cXhvFKmu77J&md5=05b68367d68dadc3009120714b06afc4CAS | 25422462PubMed | open url image1

[18]  Y. Wang, G. S. Zhuang, Y. L. Sun, Z. S. An, The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ. 2006, 40, 6579.
The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing.CrossRef | 1:CAS:528:DC%2BD28XpsF2jur0%3D&md5=8f8ffd59cb159f973075c56e5f22fe1aCAS | open url image1

[19]  Q. Y. Fu, G. S. Zhuang, J. Wang, C. Xu, K. Huang, J. Li, B. Hou, T. Lu, D. G. Streets, Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmos. Environ. 2008, 42, 2023.
Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China.CrossRef | 1:CAS:528:DC%2BD1cXitlWisLo%3D&md5=b75d824223726f479f3ca416855a352bCAS | open url image1

[20]  Y. Kim, K. Sartelet, C. Seigneur, Formation of secondary aerosols over Europe: comparison of two gas-phase chemical mechanisms. Atmos. Chem. Phys. 2011, 11, 583.
Formation of secondary aerosols over Europe: comparison of two gas-phase chemical mechanisms.CrossRef | 1:CAS:528:DC%2BC3MXkvFClsbg%3D&md5=2c98e1a6aff47bb33e3cda1ca0d785aaCAS | open url image1

[21]  Y. S. Wang, L. Yao, L. L. Wang, Z. R. Liu, D. S. Ji, G. Q. Tang, J. K. Zhang, Y. Sun, B. Hu, J. Y. Xin, Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci. 2014, 57, 14.
Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China.CrossRef | 1:CAS:528:DC%2BC3sXhvVGru7bE&md5=d8dfe1a83fe81c65718f4035b35d384dCAS | open url image1

[22]  R. P. Rodgers, A. G. Marshall, Petroleomics: advanced characterization of petroleum-derived materials by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), in Asphaltenes, Heavy Oils, and Petroleomics 2007, pp. 63–93 (Springer: New York, NY).

[23]  A. G. Marshall, R. P. Rodgers, Petroleomics: chemistry of the underworld. Proc. Natl. Acad. Sci. USA 2008, 105, 18090.
Petroleomics: chemistry of the underworld.CrossRef | 1:CAS:528:DC%2BD1cXhsVOmsLfF&md5=cd2f84499a3382040c2e6cdd6bccc1eaCAS | 18836082PubMed | open url image1

[24]  Q. Shi, N. Pan, H. Y. Long, D. C. Cui, X. F. Guo, Y. H. Long, K. H. Chung, S. Q. Zhao, C. M. Xu, C. S. Hsu, Characterization of middle-temperature gasification coal tar. Part 3: molecular composition of acidic compounds. Energy Fuels 2013, 27, 108.
Characterization of middle-temperature gasification coal tar. Part 3: molecular composition of acidic compounds.CrossRef | 1:CAS:528:DC%2BC38XhslygtrnM&md5=9bebe405927416f0b92c8ef18e1bf3dfCAS | open url image1

[25]  Y. Liu, Q. Shi, Y. H. Zhang, Y. L. He, K. H. Chung, S. Q. Zhao, C. M. Xu, Characterization of red pine pyrolysis bio-oil by gas chromatography–mass spectrometry and negative-ion electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. Energy Fuels 2012, 26, 4532.
Characterization of red pine pyrolysis bio-oil by gas chromatography–mass spectrometry and negative-ion electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BC38Xotlelsrs%3D&md5=451b70d00286d7e787a84853ad4c9651CAS | open url image1

[26]  A. S. Wozniak, J. E. Bauer, R. L. Sleighter, R. M. Dickhut, P. G. Hatcher, Technical Note: Molecular characterization of aerosol-derived water-soluble organic carbon using ultrahigh-resolution electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. Atmos. Chem. Phys. 2008, 8, 5099.
Technical Note: Molecular characterization of aerosol-derived water-soluble organic carbon using ultrahigh-resolution electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1cXhtlCntbbF&md5=18a232d8ec0b3de132d0fd89c6927076CAS | open url image1

[27]  P. Lin, J. Z. Yu, G. Engling, M. Kalberer, Organosulfates in humic-like substance fraction isolated from aerosols at seven locations in east Asia: a study by ultrahigh-resolution mass spectrometry. Environ. Sci. Technol. 2012, 46, 13118.
Organosulfates in humic-like substance fraction isolated from aerosols at seven locations in east Asia: a study by ultrahigh-resolution mass spectrometry.CrossRef | 1:CAS:528:DC%2BC38Xhs1Ons7fJ&md5=4249dd3774896f3f1610cfd88dfe5e9fCAS | 23153227PubMed | open url image1

[28]  P. Lin, A. G. Rincon, M. Kalberer, J. Z. Yu, Elemental composition of HULIS in the Pearl River Delta Region, China: results inferred from positive and negative electrospray high-resolution mass spectrometric data. Environ. Sci. Technol. 2012, 46, 7454.
Elemental composition of HULIS in the Pearl River Delta Region, China: results inferred from positive and negative electrospray high-resolution mass spectrometric data.CrossRef | 1:CAS:528:DC%2BC38XoslSgtLs%3D&md5=1055310a7b7f5cb2e337cc35fb75b220CAS | 22702400PubMed | open url image1

[29]  P. Schmitt-Kopplin, A. Gelencser, E. Dabek-Zlotorzynska, G. Kiss, N. Hertkorn, M. Harir, Y. Hong, I. Gebefugi, Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents. Anal. Chem. 2010, 82, 8017.
Analysis of the unresolved organic fraction in atmospheric aerosols with ultrahigh-resolution mass spectrometry and nuclear magnetic resonance spectroscopy: organosulfates as photochemical smog constituents.CrossRef | 1:CAS:528:DC%2BC3cXht1WmtrrF&md5=c8c5c5e9f7a53eef4b8bf9f1482fa3f2CAS | 20879800PubMed | open url image1

[30]  L. Müller, M. C. Reinnig, H. Hayen, T. Hoffmann, Characterization of oligomeric compounds in secondary organic aerosol using liquid chromatography coupled to electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 971.
Characterization of oligomeric compounds in secondary organic aerosol using liquid chromatography coupled to electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry.CrossRef | 19242953PubMed | open url image1

[31]  T. Reemtsma, A. These, P. Venkatachari, X. Y. Xia, P. K. Hopke, A. Springer, M. Linscheid, Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2006, 78, 8299.
Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BD28Xht1Sjtb7I&md5=720abf1ef5984b152b4834ed88f6d195CAS | 17165819PubMed | open url image1

[32]  L. R. Mazzoleni, P. Saranjampour, M. M. Dalbec, V. Samburova, A. G. Hallar, B. Zielinska, D. H. Lowenthal, S. Kohl, Identification of water-soluble organic carbon in non-urban aerosols using ultrahigh-resolution FT-ICR mass spectrometry: organic anions. Environ. Chem. 2012, 9, 285.
Identification of water-soluble organic carbon in non-urban aerosols using ultrahigh-resolution FT-ICR mass spectrometry: organic anions.CrossRef | 1:CAS:528:DC%2BC38XpsVOisro%3D&md5=36dae3af4403d24dcc88d2e7738682e1CAS | open url image1

[33]  M. M. Yassine, E. Dabek-Zlotorzynska, M. Harir, P. Schmitt-Kopplin, Identification of weak and strong organic acids in atmospheric aerosols by capillary electrophoresis/mass spectrometry and ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2012, 84, 6586.
Identification of weak and strong organic acids in atmospheric aerosols by capillary electrophoresis/mass spectrometry and ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BC38Xps1GjsrY%3D&md5=ae1d872116b3cbb6af8205e58c30b44cCAS | 22770380PubMed | open url image1

[34]  I. Kourtchev, S. Fuller, J. Aalto, T. M. Ruuskanen, M. W. McLeod, W. Maenhaut, R. Jones, M. Kulmala, M. Kalberer, Molecular composition of boreal forest aerosol from Hyytiala, Finland, using ultrahigh-resolution mass spectrometry. Environ. Sci. Technol. 2013, 47, 4069.
Molecular composition of boreal forest aerosol from Hyytiala, Finland, using ultrahigh-resolution mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3sXjsFGjt74%3D&md5=ffc7b599d4f051ef8161b611bf30d37aCAS | 23469832PubMed | open url image1

[35]  K. E. Altieri, B. J. Turpin, S. P. Seitzinger, Composition of dissolved organic nitrogen in continental precipitation investigated by ultrahigh-resolution FT-ICR mass spectrometry. Environ. Sci. Technol. 2009, 43, 6950.
Composition of dissolved organic nitrogen in continental precipitation investigated by ultrahigh-resolution FT-ICR mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1MXpvFyisr0%3D&md5=4faba0825b20c5980e03d91797331612CAS | 19806726PubMed | open url image1

[36]  I. Kourtchev, I. P. O’Connor, C. Giorio, S. J. Fuller, K. Kristensen, W. Maenhaut, J. C. Wenger, J. R. Sodeau, M. Glasius, M. Kalberer, Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: an ultrahigh-resolution mass spectrometry study. Atmos. Environ. 2014, 89, 525.
Effects of anthropogenic emissions on the molecular composition of urban organic aerosols: an ultrahigh-resolution mass spectrometry study.CrossRef | 1:CAS:528:DC%2BC2cXlvVSmt7w%3D&md5=d1913b9c790a7e5b216eadcbfc998f1aCAS | open url image1

[37]  K. E. Altieri, S. P. Seitzinger, A. G. Carlton, B. J. Turpin, G. C. Klein, A. G. Marshall, Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultrahigh-resolution FT-ICR mass spectrometry. Atmos. Environ. 2008, 42, 1476.
Oligomers formed through in-cloud methylglyoxal reactions: chemical composition, properties, and mechanisms investigated by ultrahigh-resolution FT-ICR mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1cXhvFymurs%3D&md5=0b39d2dbcd5d6aede0c6dd43d6d16ad0CAS | open url image1

[38]  S. Tao, X. Lu, N. Levac, A. P. Bateman, T. B. Nguyen, D. L. Bones, S. A. Nizkorodov, J. Laskin, A. Laskin, X. Yang, Molecular characterization of organosulfates in organic aerosols from Shanghai and Los Angeles urban areas by nanospray-desorption electrospray ionization high-resolution mass spectrometry. Environ. Sci. Technol. 2014, 48, 10993.
Molecular characterization of organosulfates in organic aerosols from Shanghai and Los Angeles urban areas by nanospray-desorption electrospray ionization high-resolution mass spectrometry.CrossRef | 1:CAS:528:DC%2BC2cXhsVSns7rP&md5=e548b6b3cb51b90d9c86934f229a69c6CAS | 25184338PubMed | open url image1

[39]  J. D. Surratt, Y. Gómez-González, A. W. H. Chan, R. Vermeylen, M. Shahgholi, T. E. Kleindienst, E. O. Edney, J. H. Offenberg, M. Lewandowski, M. Jaoui, Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem. A 2008, 112, 8345.
Organosulfate formation in biogenic secondary organic aerosol.CrossRef | 1:CAS:528:DC%2BD1cXpvFOgsrw%3D&md5=79218b29bed9fdac099379ed78ac8a15CAS | 18710205PubMed | open url image1

[40]  M. P. Tolocka, B. Turpin, Contribution of organosulfur compounds to organic aerosol mass. Environ. Sci. Technol. 2012, 46, 7978.
Contribution of organosulfur compounds to organic aerosol mass.CrossRef | 1:CAS:528:DC%2BC38XptVOktLg%3D&md5=37e540b80e51c732bd15a2da27168620CAS | 22731120PubMed | open url image1

[41]  H. Lukács, A. Gelencser, A. Hoffer, G. Kiss, K. Horvath, Z. Hartyani, Quantitative assessment of organosulfates in size-segregated rural fine aerosol. Atmos. Chem. Phys. 2009, 9, 231.
Quantitative assessment of organosulfates in size-segregated rural fine aerosol.CrossRef | open url image1

[42]  M. Riva, S. H. Budisulistiorini, Z. Zhang, A. Gold, J. D. Surratt, Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol. Atmos. Environ. 2016, 130, 5.
Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol.CrossRef | 1:CAS:528:DC%2BC2MXhtFajsbzF&md5=7f24f1a15975a41d6ff7ebe21a7043aaCAS | open url image1

[43]  J. Liggio, S.-M. Li, Organosulfate formation during the uptake of pinonaldehyde on acidic sulfate aerosols. Geophys. Res. Lett. 2006, 33, L13808.
Organosulfate formation during the uptake of pinonaldehyde on acidic sulfate aerosols.CrossRef | open url image1

[44]  J. D. Surratt, Y. Gomez-Gonzalez, A. W. H. Chan, R. Vermeylen, M. Shahgholi, T. E. Kleindienst, E. O. Edney, J. H. Offenberg, M. Lewandowski, M. Jaoui, W. Maenhaut, M. Claeys, R. C. Flagan, J. H. Seinfeld, Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem. A 2008, 112, 8345.
Organosulfate formation in biogenic secondary organic aerosol.CrossRef | 1:CAS:528:DC%2BD1cXpvFOgsrw%3D&md5=79218b29bed9fdac099379ed78ac8a15CAS | 18710205PubMed | open url image1

[45]  M. N. Chan, J. D. Surratt, A. W. H. Chan, K. Schilling, J. H. Offenberg, M. Lewandowski, E. O. Edney, T. E. Kleindienst, M. Jaoui, E. S. Edgerton, R. L. Tanner, S. L. Shaw, M. Zheng, E. M. Knipping, J. H. Seinfeld, Influence of aerosol acidity on the chemical composition of secondary organic aerosol from beta-caryophyllene. Atmos. Chem. Phys. 2011, 11, 1735.
Influence of aerosol acidity on the chemical composition of secondary organic aerosol from beta-caryophyllene.CrossRef | 1:CAS:528:DC%2BC3MXlvFyltbw%3D&md5=79ce0cdcce2572adc4c09aca1b9c4b64CAS | open url image1

[46]  A. I. Darer, N. C. Cole-Filipiak, A. E. O’Connor, M. J. Elrod, Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates. Environ. Sci. Technol. 2011, 45, 1895.
Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates.CrossRef | 1:CAS:528:DC%2BC3MXhsFGnsL4%3D&md5=b7421bd947c92093553020695fc00f6bCAS | 21291229PubMed | open url image1

[47]  M. J. Perri, Y. B. Lim, S. P. Seitzinger, B. J. Turpin, Organosulfates from glycolaldehyde in aqueous aerosols and clouds: laboratory studies. Atmos. Environ. 2010, 44, 2658.
Organosulfates from glycolaldehyde in aqueous aerosols and clouds: laboratory studies.CrossRef | 1:CAS:528:DC%2BC3cXnt12ltLs%3D&md5=27ee1851fcd15c069c661474a8d4fac6CAS | open url image1

[48]  P. Lin, X. F. Huang, L. Y. He, J. Z. Yu, Abundance and size distribution of HULIS in ambient aerosols at a rural site in south China. J. Aerosol Sci. 2010, 41, 74.
Abundance and size distribution of HULIS in ambient aerosols at a rural site in south China.CrossRef | 1:CAS:528:DC%2BC3cXnt1entg%3D%3D&md5=58b1f45b72219778af6ed70d3d104274CAS | open url image1

[49]  B. Jiang, Y. M. Liang, C. M. Xu, J. Y. Zhang, M. Hu, Q. Shi, Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier-transform ion cyclotron resonance. Environ. Sci. Technol. 2014, 48, 4716.
Polycyclic aromatic hydrocarbons (PAHs) in ambient aerosols from Beijing: characterization of low volatile PAHs by positive-ion atmospheric pressure photoionization (APPI) coupled with Fourier-transform ion cyclotron resonance.CrossRef | 1:CAS:528:DC%2BC2cXls1Sksbg%3D&md5=34b9e5491ba18c6b19cd2a3a831c053aCAS | 24702199PubMed | open url image1

[50]  Q. Shi, D. J. Hou, K. H. Chung, C. M. Xu, S. Q. Zhao, Y. H. Zhang, Characterization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. Energy Fuels 2010, 24, 2545.
Characterization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3cXjvVyrtLk%3D&md5=b37c6becef1a3aea5a972b52800e2364CAS | open url image1

[51]  X. H. H. Huang, Q. J. Bian, W. M. Ng, P. K. K. Louie, J. Z. Yu, Characterization of PM2.5 major components and source investigation in suburban Hong Kong: a one-year monitoring study. Aerosol Air Qual. Res. 2014, 14, 237.
| 1:CAS:528:DC%2BC2cXotVKrtL4%3D&md5=ea2e074f6280dc6b32bb1ff401767a4dCAS | open url image1

[52]  R. R. Draxler, G. D. Rolph, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model 2011 (NOAA Air Resources Laboratory: College Park, MD). Available at http://ready.arl.noaa.gov/HYSPLIT.php [Verified 28 June 2016].

[53]  G. Liu, Z. Niu, D. Van Niekerk, T. Xue, L. Zheng, Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology, in Reviews of Environmental Contamination and Toxicology, Vol. 192 (Ed. DM Whitacre) 2008, pp. 1–28 (Springer: New York, NY).

[54]  B. Y. Kuang, P. Lin, X. H. H. Huang, J. Z. Yu, Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM2.5 major components and source markers. Atmos. Chem. Phys. 2015, 15, 1995.
Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM2.5 major components and source markers.CrossRef | 1:CAS:528:DC%2BC2MXkt1SgsLk%3D&md5=f444c19710cd1dd84d4e3f18df1b088dCAS | open url image1

[55]  J. Tollefson, China’s emissions overestimated. Nature 2015, 524, 276.
China’s emissions overestimated.CrossRef | 1:CAS:528:DC%2BC2MXhtlKlu7jM&md5=bd1261585bc879a84df14032d7456cccCAS | 26289187PubMed | open url image1

[56]  D. Fabbri, C. Torri, B. R. T. Simonei, L. Marynowski, A. I. Rushdi, M. J. Fabianska, Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites. Atmos. Environ. 2009, 43, 2286.
Levoglucosan and other cellulose and lignin markers in emissions from burning of Miocene lignites.CrossRef | 1:CAS:528:DC%2BD1MXktVeisr0%3D&md5=f310fd0291107ee742e188d16c05fae4CAS | open url image1

[57]  Y. X. Zhang, J. J. Schauer, Y. H. Zhang, L. M. Zeng, Y. J. Wei, Y. Liu, M. Shao, Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Environ. Sci. Technol. 2008, 42, 5068.
Characteristics of particulate carbon emissions from real-world Chinese coal combustion.CrossRef | 1:CAS:528:DC%2BD1cXmvVGqtb4%3D&md5=576bfda91fd57db37e738787149e1ee9CAS | open url image1

[58]  J. J. Schauer, W. F. Rogge, L. M. Hildemann, M. A. Mazurek, G. R. Cass, B. R. T. Simoneit, Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ. 1996, 30, 3857. open url image1

[59]  J. Z. Yu, X. H. H. Huang, S. S. H. Ho, Q. J. Bian, Non-polar organic compounds in fine particles: quantification by thermal desorption-GC/MS and evidence for their significant oxidation in ambient aerosols in Hong Kong. Anal. Bioanal. Chem. 2011, 401, 3125.
Non-polar organic compounds in fine particles: quantification by thermal desorption-GC/MS and evidence for their significant oxidation in ambient aerosols in Hong Kong.CrossRef | 1:CAS:528:DC%2BC3MXht1ygs7fF&md5=ba537918f14d860f73e385d6cc506bb6CAS | 21983947PubMed | open url image1

[60]  N. Yassaa, B. Y. Meklati, A. Cecinato, F. Marino, Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City area. Atmos. Environ. 2001, 35, 1843.
Particulate n-alkanes, n-alkanoic acids and polycyclic aromatic hydrocarbons in the atmosphere of Algiers City area.CrossRef | 1:CAS:528:DC%2BD3MXht1yqu7s%3D&md5=653687a92ea2e0ddf0263ac0b6d05a75CAS | open url image1

[61]  H. J. Tobias, D. E. Beving, P. J. Ziemann, H. Sakurai, M. Zuk, P. H. McMurry, D. Zarling, R. Waytulonis, D. B. Kittelson, Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer. Environ. Sci. Technol. 2001, 35, 2233.
Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer.CrossRef | 1:CAS:528:DC%2BD3MXivFSgsbk%3D&md5=67fba35e146450daf8d28ddd3b929c37CAS | 11414024PubMed | open url image1

[62]  H. Sakurai, H. J. Tobias, K. Park, D. Zarling, K. S. Docherty, D. B. Kittelson, P. H. McMurry, P. J. Ziemann, On-line measurements of diesel nanoparticle composition and volatility. Atmos. Environ. 2003, 37, 1199.
On-line measurements of diesel nanoparticle composition and volatility.CrossRef | 1:CAS:528:DC%2BD3sXhslGqsbg%3D&md5=d957b8c596decf38f101629f6bc2c7b3CAS | open url image1

[63]  Q. Shi, C. Xu, K. H. Chung, Y. Zhang, W. Gao, Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2010, 24, 563.
Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1MXhtlChurrE&md5=17890d5333b9555842a2260bd1942552CAS | open url image1

[64]  L. Xu, H. Y. Guo, C. M. Boyd, M. Klein, A. Bougiatioti, K. M. Cerully, J. R. Hite, G. Isaacman-VanWertz, N. M. Kreisberg, C. Knote, K. Olson, A. Koss, A. H. Goldstein, S. V. Hering, J. de Gouw, K. Baumann, S. H. Lee, A. Nenes, R. J. Weber, N. L. Ng, Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the south-eastern United States. Proc. Natl. Acad. Sci. USA 2015, 112, 37.
Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the south-eastern United States.CrossRef | 1:CAS:528:DC%2BC2cXitFCrtrfK&md5=ed0331d81f4d5d76453f768a12e2cd7aCAS | 25535345PubMed | open url image1

[65]  Y. Iinuma, C. Muller, T. Berndt, O. Boge, M. Claeys, H. Herrmann, Evidence for the existence of organosulfates from beta-pinene ozonolysis in ambient secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 6678.
Evidence for the existence of organosulfates from beta-pinene ozonolysis in ambient secondary organic aerosol.CrossRef | 1:CAS:528:DC%2BD2sXpvVCntLo%3D&md5=a10154227e6b8337afad71679a1981b5CAS | 17969680PubMed | open url image1

[66]  J. D. Surratt, J. H. Kroll, T. E. Kleindienst, E. O. Edney, M. Claeys, A. Sorooshian, N. L. Ng, J. H. Offenberg, M. Lewandowski, M. Jaoui, R. C. Flagan, J. H. Seinfeld, Evidence for organosulfates in secondary organic aerosol. Environ. Sci. Technol. 2007, 41, 517.
Evidence for organosulfates in secondary organic aerosol.CrossRef | 1:CAS:528:DC%2BD28Xht1OmsLzM&md5=a1bc7c44d64a3fa51741ebc0724303b5CAS | 17310716PubMed | open url image1

[67]  X. K. Wang, S. Rossignol, Y. Ma, L. Yao, M. Y. Wang, J. M. Chen, C. George, L. Wang, Molecular characterization of atmospheric particulate organosulfates in three megacities at the middle and lower reaches of the Yangtze River. Atmos. Chem. Phys. 2016, 16, 2285.
Molecular characterization of atmospheric particulate organosulfates in three megacities at the middle and lower reaches of the Yangtze River.CrossRef | 1:CAS:528:DC%2BC28XpsVSnu7Y%3D&md5=a8c4a5d83dc4ceff216e12d306f0ea6cCAS | open url image1

[68]  B. Y. Kuang, P. Lin, M. Hu, J. Z. Yu, Aerosol size distribution characteristics of organosulfates in the Pearl River Delta region, China. Atmos. Environ. 2016, 130, 23.
Aerosol size distribution characteristics of organosulfates in the Pearl River Delta region, China.CrossRef | 1:CAS:528:DC%2BC2MXhsFaqur3K&md5=8a5861ec7103c8f3fe2dd63a62e76751CAS | open url image1

[69]  E. A. Stone, L. M. Yang, L. Y. E. Yu, M. Rupakheti, Characterization of organosulfates in atmospheric aerosols at Four Asian locations. Atmos. Environ. 2012, 47, 323.
Characterization of organosulfates in atmospheric aerosols at Four Asian locations.CrossRef | 1:CAS:528:DC%2BC3MXhs1KrtbrL&md5=c681b68068d3ffdaec3dad0a662ec15dCAS | open url image1

[70]  S. Kundu, T. A. Quraishi, G. Yu, C. Suarez, F. N. Keutsch, E. A. Stone, Evidence and quantitation of aromatic organosulfates in ambient aerosols in Lahore, Pakistan. Atmos. Chem. Phys. 2013, 13, 4865.
Evidence and quantitation of aromatic organosulfates in ambient aerosols in Lahore, Pakistan.CrossRef | 1:CAS:528:DC%2BC3sXhsleht7bP&md5=31c71e2f2de2348a9423e621d9f82179CAS | open url image1

[71]  M. Riva, S. Tomaz, T. Q. Cui, Y. H. Lin, E. Perraudin, A. Gold, E. A. Stone, E. Villenave, J. D. Surratt, Evidence for an unrecognized secondary anthropogenic source of organosulfates and sulfonates: gas-phase oxidation of polycyclic aromatic hydrocarbons in the presence of sulfate aerosol. Environ. Sci. Technol. 2015, 49, 6654.
Evidence for an unrecognized secondary anthropogenic source of organosulfates and sulfonates: gas-phase oxidation of polycyclic aromatic hydrocarbons in the presence of sulfate aerosol.CrossRef | 1:CAS:528:DC%2BC2MXms1Slt7c%3D&md5=77f138225580c4317b9172ebe344408bCAS | 25879928PubMed | open url image1

[72]  C. A. Hughey, C. L. Hendrickson, R. P. Rodgers, A. G. Marshall, K. N. Qian, Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 2001, 73, 4676.
Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra.CrossRef | 1:CAS:528:DC%2BD3MXmtlWisbo%3D&md5=dbba4e4ac2106613b2a761abf3770ff2CAS | 11605846PubMed | open url image1

[73]  L. R. Mazzoleni, B. M. Ehrmann, X. H. Shen, A. G. Marshall, J. L. Collett, Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 2010, 44, 3690.
Water-soluble atmospheric organic matter in fog: exact masses and chemical formula identification by ultrahigh-resolution Fourier-transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3cXkvVaiu7o%3D&md5=4ff38aaf043294718c1df6a1673e79f1CAS | 20397689PubMed | open url image1

[74]  N. B. Cech, C. G. Enke, Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 2001, 20, 362.
Practical implications of some recent studies in electrospray ionization fundamentals.CrossRef | 1:CAS:528:DC%2BD38Xks1Olsrk%3D&md5=9477aef87a9dec42362c830ccfd42698CAS | 11997944PubMed | open url image1

[75]  Y. Li, Z. Fang, C. He, Y. Zhang, C. Xu, K. H. Chung, Q. Shi, Molecular characterization and transformation of dissolved organic matter in refinery wastewater from water treatment processes: characterization by Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2015, 29, 6956.
Molecular characterization and transformation of dissolved organic matter in refinery wastewater from water treatment processes: characterization by Fourier transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BC2MXhs1ejsbrO&md5=57f2f4e3567b70f3a1a6bdf34dbcaf7eCAS | open url image1

[76]  X. B. Zhou, Q. Shi, Y. H. Zhang, S. Q. Zhao, R. Zhang, K. H. Chung, C. M. Xu, Analysis of saturated hydrocarbons by redox reaction with negative-ion electrospray Fourier-transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2012, 84, 3192.
Analysis of saturated hydrocarbons by redox reaction with negative-ion electrospray Fourier-transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BC38XitlWntbg%3D&md5=301e8cf88fd2244496fb5249d65d6496CAS | open url image1

[77]  S. Kim, R. W. Kramer, P. G. Hatcher, Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. Anal. Chem. 2003, 75, 5336.
Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram.CrossRef | 1:CAS:528:DC%2BD3sXnt1OhsrY%3D&md5=62a01dfac9d49e90f63f1a3275122e16CAS | 14710810PubMed | open url image1

[78]  Z. G. Wu, R. P. Rodgers, A. G. Marshall, Two- and three-dimensional van Krevelen diagrams: a graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier-transform ion cyclotron resonance mass measurements. Anal. Chem. 2004, 76, 2511.
Two- and three-dimensional van Krevelen diagrams: a graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier-transform ion cyclotron resonance mass measurements.CrossRef | 1:CAS:528:DC%2BD2cXisVyisr0%3D&md5=3e05933233c384acfd1567ca5ffdff3dCAS | open url image1



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (1.3 MB) Export Citation