Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

PEST-ORCHESTRA, a tool for optimising advanced ion-binding model parameters: derivation of NICA-Donnan model parameters for humic substances reactivity

Noémie Janot A B , José Paulo Pinheiro A B , Wander Gustavo Botero C , Johannes C. L. Meeussen D and Jan E. Groenenberg A B E F
+ Author Affiliations
- Author Affiliations

A CNRS, LIEC, UMR7360, 15 Avenue du Charmois, Vandoeuvre-lès-Nancy F-54501, France.

B Université de Lorraine, LIEC, UMR7360, 15 Avenue du Charmois, Vandoeuvre-lès-Nancy, F-54501, France.

C Federal University of Alagoas (UFAL), Campus Arapiraca, 57309-005-, Arapiraca, AL, Brazil.

D NRG Consultancy & Services, PO Box 25, 1755 ZG Petten, The Netherlands.

E Wageningen University, section soil quality, PO Box 47, 6700 AA Wageningen, The Netherlands.

F Corresponding author. Email: bertjan.groenenberg@wur.nl

Environmental Chemistry 14(1) 31-38 https://doi.org/10.1071/EN16039
Submitted: 19 February 2016  Accepted: 28 July 2016   Published: 5 September 2016

Environmental context. The environmental behaviour of trace metals in soils and waters largely depends on the chemical form (speciation) of the metals. Speciation software programs combining models for the binding of metals to soil and sediment constituents are powerful tools in environmental risk assessment. This paper describes a new combination of speciation software with a fitting program to optimise geochemical model parameters that describes proton and metal binding to humic substances.

Abstract. Here we describe the coupling of the chemical speciation software ORCHESTRA with the parameter estimation software PEST. This combination enables the computation of optimised model parameters from experimental data for the ion binding models implemented in ORCHESTRA. For testing this flexible tool, the NICA-Donnan model parameters for proton-, Cd- and Zn-binding to Laurentian fulvic acid were optimised. The extensive description of the method implementation and the examples provided facilitate the use of this tool by students and researchers. Three procedures were compared which derive the proton binding parameters, differing in the way they constrain the model parameters and in the implementation of the electrostatic Donnan model. Although the different procedures resulted in significantly different sets of model parameters, the experimental data fit obtained was of similar quality. The choice of the relation between the Donnan volume and the ionic strength appears to have a strong influence on the derived set of optimal model parameters, especially on the values of the protonation constants, as well as on the Donnan potential and Donnan volume. Optimised results are discussed in terms of their physico-chemical plausibility. Coherent sets of NICA-Donnan parameters were derived for Cd and Zn binding to Laurentian fulvic acid.


References

[1]  J. E. Groenenberg, S. Lofts, The use of assemblage models to describe trace element partitioning, speciation, and fate: a review. Environ. Toxicol. Chem. 2014, 33, 2181.
The use of assemblage models to describe trace element partitioning, speciation, and fate: a review.CrossRef | 1:CAS:528:DC%2BC2cXhsFKntrjP&md5=33158a57a33330e674f81d1717493b57CAS | 24862928PubMed |

[2]  M. G. Keizer, W. H. van Riemsdijk, ECOSAT, a computer program for the calculation of chemical speciation and transport in soil-water systems 1995 (Wageningen Agriculture University: The Netherlands).

[3]  J. P. Gustafsson, Visual minteq 2006 (KTH: Stockholm, Sweden). Available at http://vminteq.lwr.kth.se/ [Verified 17 August 2016].

[4]  D.L. Parkhurst, C.A.J. Appelo, Description of input and examples for PHREEQC version 3 – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, in U.S. Geological Survey Techniques and Methods 2013, Chapter A43, pp. 1–497 (US Geological Survey: Denver, CO). Available at http://pubs.usgs.gov/tm/06/a43/ [Verified 17 August 2016].

[5]  E. Tipping, WHAMC – a chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput. Geosci. 1994, 20, 973.
WHAMC – a chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances.CrossRef | 1:CAS:528:DyaK2MXhtlyhtrY%3D&md5=f95205c4a07a8c0c56d3962109410d86CAS |

[6]  J. C. L. Meeussen, ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models. Environ. Sci. Technol. 2003, 37, 1175.
ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models.CrossRef | 1:CAS:528:DC%2BD3sXovF2mtQ%3D%3D&md5=042a09b88083fbde9001f96e7b888dccCAS |

[7]  D. G. Kinniburgh, FIT User Guide, Technical Report WD/93/23, British Geological Survey 1993 (Keyworth: UK).

[8]  T. Saito, L. K. Koopal, S. Nagasaki, S. Tanaka, Analysis of copper binding in the ternary system Cu2+/humic acid/goethite at neutral to acidic pH. Environ. Sci. Technol. 2005, 39, 4886.
Analysis of copper binding in the ternary system Cu2+/humic acid/goethite at neutral to acidic pH.CrossRef | 1:CAS:528:DC%2BD2MXktlKis7w%3D&md5=b62ee5d1626ff3e5a518df7fce5b77b0CAS | 16053088PubMed |

[9]  N. Janot, P. E. Reiller, G. V. Korshin, M. F. Benedetti, Using spectrophotometric titrations to characterize humic acid reactivity at environmental concentrations. Environ. Sci. Technol. 2010, 44, 6782.
Using spectrophotometric titrations to characterize humic acid reactivity at environmental concentrations.CrossRef | 1:CAS:528:DC%2BC3cXpvFejsbg%3D&md5=dc27aa023127f5e9be5fc1182b74130cCAS | 20698549PubMed |

[10]  J. Xie, X. Gu, F. Tong, Y. Zhao, Y. Tan, Surface complexation modeling of Cr(VI) adsorption at the goethite–water interface. J. Colloid Interface Sci. 2015, 455, 55.
Surface complexation modeling of Cr(VI) adsorption at the goethite–water interface.CrossRef | 1:CAS:528:DC%2BC2MXpt1ehu7s%3D&md5=103a87c4550727a248891a4df6a8a17cCAS | 26057103PubMed |

[11]  C. Catrouillet, M. Davranche, A. Dia, M. Bouhnik-Le Coz, R. Marsac, O. Pourret, G. Gruau, Geochemical modeling of Fe(II) binding to humic and fulvic acids. Chem. Geol. 2014, 372, 109.
Geochemical modeling of Fe(II) binding to humic and fulvic acids.CrossRef | 1:CAS:528:DC%2BC2cXksleqsLY%3D&md5=14bfdce932933b520afdb9a6af1dcf64CAS |

[12]  S. Lofts, E. Tipping, Assessing WHAM/Model VII against field measurements of free metal ion concentrations: Model performance and the role of uncertainty in parameters and inputs. Environ. Chem. 2011, 8, 501.
Assessing WHAM/Model VII against field measurements of free metal ion concentrations: Model performance and the role of uncertainty in parameters and inputs.CrossRef | 1:CAS:528:DC%2BC3MXhtlykt73J&md5=809cefc1119e866c034d1ddf672bb549CAS |

[13]  E. Tipping, Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3.
Humic ion-binding model VI: an improved description of the interactions of protons and metal ions with humic substances.CrossRef | 1:CAS:528:DyaK1cXntlSjuro%3D&md5=b378d02e82c10954fc96a3f5721354bbCAS |

[14]  J. P. Gustafsson, Modeling the acid–base properties and metal complexation of humic substances with the Stockholm humic model. J. Colloid Interface Sci. 2001, 244, 102.
Modeling the acid–base properties and metal complexation of humic substances with the Stockholm humic model.CrossRef | 1:CAS:528:DC%2BD3MXot1KisLw%3D&md5=40c9b46705de020600356831a4956cd7CAS |

[15]  D. G. Kinniburgh, C. J. Milne, M. F. Benedetti, J. P. Pinheiro, J. D. Filius, L. K. Koopal, W. H. van Riemsdijk, Metal ion binding by humic acid: application of the NICA-Donnan model. Environ. Sci. Technol. 1996, 30, 1687.
Metal ion binding by humic acid: application of the NICA-Donnan model.CrossRef | 1:CAS:528:DyaK28XhvVKgtL4%3D&md5=1d137e3076f5be8bb68b09b28a47f125CAS |

[16]  L. K. Koopal, T. Saito, J. P. Pinheiro, W. H. van Riemsdijk, Ion binding to natural organic matter: general considerations and the NICA–Donnan model. Colloids Surf. A Physicochem. Eng. Asp. 2005, 265, 40.
Ion binding to natural organic matter: general considerations and the NICA–Donnan model.CrossRef | 1:CAS:528:DC%2BD2MXms1ynt7s%3D&md5=74b9e5e402bfb416e1577bca0fa39fefCAS |

[17]  M. F. Benedetti, W. H. van Riemsdijk, L. K. Koopal, Humic substances considered as a heterogeneous Donnan gel phase. Environ. Sci. Technol. 1996, 30, 1805.
Humic substances considered as a heterogeneous Donnan gel phase.CrossRef | 1:CAS:528:DyaK28XisFans7Y%3D&md5=d0a9b1031c6f681877509efef36cce8bCAS |

[18]  D. G. Kinniburgh, W. H. van Riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti, M. J. Avena, Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf. A Physicochem. Eng. Asp. 1999, 151, 147.
Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency.CrossRef | 1:CAS:528:DyaK1MXhvV2ns7g%3D&md5=ec0ca01c2bb0ef0e1916ce39ac9ef372CAS |

[19]  J. B. Christensen, E. Tipping, D. G. Kinniburgh, C. Grøn, T. H. Christensen, Proton binding by groundwater fulvic acids of different age, origins, and structure modeled with the model V and NICA-Donnan model. Environ. Sci. Technol. 1998, 32, 3346.
Proton binding by groundwater fulvic acids of different age, origins, and structure modeled with the model V and NICA-Donnan model.CrossRef | 1:CAS:528:DyaK1cXlvFKmu7g%3D&md5=7557dd327d45b2777880920484abb31aCAS |

[20]  J. E. Groenenberg, G. F. Koopmans, R. N. J. Comans, Uncertainty analysis of the nonideal competitive adsorption-donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution. Environ. Sci. Technol. 2010, 44, 1340.
Uncertainty analysis of the nonideal competitive adsorption-donnan model: effects of dissolved organic matter variability on predicted metal speciation in soil solution.CrossRef | 1:CAS:528:DC%2BC3cXnvVyh&md5=ff4a302e78eecfdf3bf10057e075d421CAS | 20047312PubMed |

[21]  T. Lenoir, A. Matynia, A. Manceau, Convergence-optimized procedure for applying the NICA-Donnan model to potentiometric titrations of humic substances. Environ. Sci. Technol. 2010, 44, 6221.
Convergence-optimized procedure for applying the NICA-Donnan model to potentiometric titrations of humic substances.CrossRef | 1:CAS:528:DC%2BC3cXptVygsLo%3D&md5=af25321b58df1b5fa11f8210072eb490CAS | 20704219PubMed |

[22]  M. F. Benedetti, W. H. van Riemsdijk, L. K. Koopal, D. G. Kinniburgh, D. C. Gooddy, C. J. Milne, Metal ion binding by natural organic matter: from the model to the field. Geochim. Cosmochim. Acta 1996, 60, 2503.
Metal ion binding by natural organic matter: from the model to the field.CrossRef | 1:CAS:528:DyaK28XltFaqtrc%3D&md5=cb646e40c7b70607a3e1bae68b5838fbCAS |

[23]  Z.-D. Wang, B. C. Pant, C. H. Langford, Spectroscopic and structural characterization of a Laurentian fulvic acid: notes on the origin of the color. Anal. Chim. Acta 1990, 232, 43.
Spectroscopic and structural characterization of a Laurentian fulvic acid: notes on the origin of the color.CrossRef | 1:CAS:528:DyaK3cXkslOis7c%3D&md5=2d2fe0bcf3b58e14b94df6904b32de36CAS |

[24]  J. P. Pinheiro, A. M. Mota, M. F. Benedetti, Lead and calcium binding to fulvic acids: Salt effect and competition. Environ. Sci. Technol. 1999, 33, 3398.
Lead and calcium binding to fulvic acids: Salt effect and competition.CrossRef | 1:CAS:528:DyaK1MXlsVKltbw%3D&md5=d4b02a13fe1b47a0b887f0eaec265209CAS |

[25]  C. J. Milne, D. G. Kinniburgh, E. Tipping, Generic NICA-Donnan model parameters for proton binding by humic substances. Environ. Sci. Technol. 2001, 35, 2049.
Generic NICA-Donnan model parameters for proton binding by humic substances.CrossRef | 1:CAS:528:DC%2BD3MXis1GrsLY%3D&md5=f3ae818064414aa9b9be0179dcc79617CAS | 11393987PubMed |

[26]  M. F. Benedetti, C. J. Milne, D. G. Kinniburgh, W. H. van Riemsdijk, L. K. Koopal, Metal ion binding to humic substances: application of the non-ideal competitive adsorption model. Environ. Sci. Technol. 1995, 29, 446.
Metal ion binding to humic substances: application of the non-ideal competitive adsorption model.CrossRef | 1:CAS:528:DyaK2MXivFOrs7s%3D&md5=369d58b1a5a39524e7b632e2f5fe0974CAS | 22201392PubMed |

[27]  J. C. M. De Wit, W. H. van Riemsdijk, M. M. Nederlof, D. G. Kinniburgh, L. K. Koopal, Analysis of ion binding on humic substances and the determination of intrinsic affinity distributions. Anal. Chim. Acta 1990, 232, 189.
Analysis of ion binding on humic substances and the determination of intrinsic affinity distributions.CrossRef | 1:CAS:528:DyaK3cXkvFKls7w%3D&md5=55703b13b3707c343ab727d53d2bb4b1CAS |

[28]  L. S. Rocha, J. P. Pinheiro, H. M. Carapuça, Evaluation of nanometer thick mercury film electrodes for stripping chronopotentiometry. J. Electroanal. Chem. 2007, 610, 37.
Evaluation of nanometer thick mercury film electrodes for stripping chronopotentiometry.CrossRef | 1:CAS:528:DC%2BD2sXht1yiurrJ&md5=e03fd47158f621fd064b7d75fd07d222CAS |

[29]  C. Parat, L. Authier, D. Aguilar, E. Companys, J. Puy, J. Galceran, M. Potin-Gautier, Direct determination of free metal concentration by implementing stripping chronopotentiometry as the second stage of AGNES. Analyst 2011, 136, 4337.
Direct determination of free metal concentration by implementing stripping chronopotentiometry as the second stage of AGNES.CrossRef | 1:CAS:528:DC%2BC3MXht1ags7jN&md5=29851a9ecc227032bcb8e38b93dc7304CAS | 21879035PubMed |

[30]  A. van Zomeren, A. Costa, J. P. Pinheiro, R. N. J. Comans, Proton binding properties of humic substances originating from natural and contaminated materials. Environ. Sci. Technol. 2009, 43, 1393.
Proton binding properties of humic substances originating from natural and contaminated materials.CrossRef | 1:CAS:528:DC%2BD1MXhsFWgu7k%3D&md5=9dba626e0bdf840c4b0d7c6a9bf3948bCAS | 19350909PubMed |

[31]  J. C. M. de Wit, W. H. van Riemsdijk, L. K. Koopal, Proton binding to humic substances. 1. Electrostatic effects. Environ. Sci. Technol. 1993, 27, 2005.
Proton binding to humic substances. 1. Electrostatic effects.CrossRef | 1:CAS:528:DyaK3sXlsF2ht7k%3D&md5=40dddc8ce1050cfdbf0ff64cec9539daCAS |

[32]  M. J. Avena, A. W. P. Vermeer, L. K. Koopal, Volume and structure of humic acids studied by viscometry. Colloids Surf. A Physicochem. Eng. Asp. 1999, 151, 213.
Volume and structure of humic acids studied by viscometry.CrossRef | 1:CAS:528:DyaK1MXhvV2nsL8%3D&md5=3d45d625aa9ec24feb2998608aafcc61CAS |

[33]  Z.-D. Wang, D. S. Gamble, C. H. Langford, Interaction of atrazine with Laurentian fulvic acid: binding and hydrolysis. Anal. Chim. Acta 1990, 232, 181.
Interaction of atrazine with Laurentian fulvic acid: binding and hydrolysis.CrossRef | 1:CAS:528:DyaK3cXkvFKls78%3D&md5=d6216339554e2e942cc2abb6be9c381aCAS |

[34]  A. W. P. Vermeer, L. K. Koopal, Adsorption of humic acids to mineral particles. 2. Polydispersity effects with polyelectrolyte adsorption. Langmuir 1998, 14, 4210.
Adsorption of humic acids to mineral particles. 2. Polydispersity effects with polyelectrolyte adsorption.CrossRef | 1:CAS:528:DyaK1cXktFKqt74%3D&md5=1178cff9984f21776aece031a64c8d0bCAS |

[35]  C. J. Milne, D. G. Kinniburgh, W. H. van Riemsdijk, E. Tipping, Generic NICA-Donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958.
Generic NICA-Donnan model parameters for metal-ion binding by humic substances.CrossRef | 1:CAS:528:DC%2BD3sXosVWgsQ%3D%3D&md5=3856f03569e3195909173b4e5e37a111CAS | 12666927PubMed |

[36]  D. Jouvin, P. Louvat, F. Juillot, C. N. Maréchal, M. F. Benedetti, Zinc isotopic fractionation: why organic matters. Environ. Sci. Technol. 2009, 43, 5747.
Zinc isotopic fractionation: why organic matters.CrossRef | 1:CAS:528:DC%2BD1MXnsFKns7s%3D&md5=33dc6e7f0f74159486a639671770dc7dCAS | 19731672PubMed |

[37]  T. Hiemstra, W. H. van Riemsdijk, A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interface Sci. 1996, 179, 488.
A surface structural approach to ion adsorption: the charge distribution (CD) model.CrossRef | 1:CAS:528:DyaK28XjtFOjur0%3D&md5=20db9344bec51d3d9a5e080c0166b943CAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (3.2 MB) Export Citation Cited By (3)