Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Carbon and nitrogen dynamics in decaying wood: paleoenvironmental implications

Romain Tramoy A D , Mathieu Sebilo B , Thanh Thuy Nguyen Tu C and Johann Schnyder A

A Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Univ Paris 06, Centre National de la Recherche Scientifique (CNRS), Institut des Sciences de la Terre de Paris (iSTeP), 4 Place Jussieu, 75005 Paris, France.

B Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institute of Ecology and Environmental Sciences (IEES), 4 Place Jussieu 75005 Paris, France.

C Sorbonne Universités, UPMC Univ Paris 06, CNRS, EPHE, Milieux Environnementaux, Transferts et Interractions dans les Hydrosystèmes et les Sols (METIS), 4 Place Jussieu 75005 Paris, France.

D Corresponding author. Email: romain.tramoy@gmail.com

Environmental Chemistry - http://dx.doi.org/10.1071/EN16049
Submitted: 2 March 2016  Accepted: 10 June 2016   Published online: 27 July 2016

Environmental context. Carbon and nitrogen isotopes in terrestrial organic matter are widely used for reconstructing past environments, but organic matter is exposed to degradation as soon as it is deposited during what is called early diagenesis. This study explores the effects of this process on organic carbon and nitrogen isotopes, and concludes that it homogenises an environmental signal by integrating all their components. Thus, early diagenesis may not preclude paleoenvironmental reconstructions.

Abstract. The effect of early diagenesis on carbon and, especially, nitrogen isotopes (δ13C and δ15N) of organic matter is not well understood and is of interest for accurate paleoenvironmental reconstructions. Wood samples were incubated in distilled water and river water to assess the effects of early diagenesis on carbon and nitrogen dynamics. Elemental content and isotopic composition of carbon and nitrogen as well as mass loss of wood pieces were determined. Mass loss in river water was three times greater than in distilled water. This difference was attributed to the development of two different types of fungi characterised by various degradation rates. Carbon dynamics of wood samples showed similar patterns in both type of water: (i) a sharp increase in carbon content, possibly related to carbohydrate degradation, before it slowly returned towards initial values, and (ii) no significant changes in δ13C values. In contrast, nitrogen dynamics of samples showed complex patterns: (i) N release associated with 15N depletion in distilled water, attributed to uptake of 15N-enriched pool (i.e. proteins) by fungi, and (ii) N accumulation associated with 15N enrichment in river water. The latter pattern was attributed predominantly to microbially mediated importation of 15N-enriched nitrate from river water. Although challenging, the present results suggest that early diagenesis may average an environmental signal by integrating individual signals (woods, fungi, water) and microbial processes. Considering the non-linear behaviour of early diagenesis, this integration is probably almost instantaneous on the geological time scale, which may not preclude paleoenvironmental reconstructions.

Additional keywords: δ13C, δ15N, degradation, early diagenesis, fungi.


References

[1]  M. R. Talbot, T. Johannessen, A high-resolution palaeoclimatic record for the last 27 500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet. Sci. Lett. 1992, 110, 23.
A high-resolution palaeoclimatic record for the last 27 500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter.CrossRef | 1:CAS:528:DyaK38XkvFCjtr4%3D&md5=862ff1c9e0ff726b85e176447cb46c70CAS | open url image1

[2]  C. Pride, R. Thunell, D. Sigman, L. Keigwin, M. Altabet, E. Tappa, Nitrogen isotopic variations in the Gulf of California since the last deglaciation: response to global climate change. Paleoceanography 1999, 14, 397.
Nitrogen isotopic variations in the Gulf of California since the last deglaciation: response to global climate change.CrossRef | open url image1

[3]  H. C. Jenkyns, D. R. Gröcke, S. P. Hesselbo, Nitrogen isotope evidence for water mass denitrification during the Early Toarcian (Jurassic) oceanic anoxic event. Paleoceanography 2001, 16, 593.
Nitrogen isotope evidence for water mass denitrification during the Early Toarcian (Jurassic) oceanic anoxic event.CrossRef | open url image1

[4]  T. T. Nguyen Tu, J. Kvaček, D. Uličný, H. Bocherens, A. Mariotti, J. Broutin, Isotope reconstruction of plant palaeoecology. Case study of Cenomanian floras from Bohemia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 183, 43.
Isotope reconstruction of plant palaeoecology. Case study of Cenomanian floras from Bohemia.CrossRef | open url image1

[5]  R. A. Andersson, P. Meyers, E. Hornibrook, P. Kuhry, C. -M. Mörth, Elemental and isotopic carbon and nitrogen records of organic matter accumulation in a Holocene permafrost peat sequence in the east European Russian Arctic. J. Quat Sci. 2012, 27, 545.
Elemental and isotopic carbon and nitrogen records of organic matter accumulation in a Holocene permafrost peat sequence in the east European Russian Arctic.CrossRef | open url image1

[6]  J. -Y. Storme, C. Dupuis, J. Schnyder, F. Quesnel, S. Garel, A. I. Iakovleva, P. Iacumin, A. Di Matteo, M. Sebilo, J. Yans, Cycles of humid–dry climate conditions around the P/E boundary: new stable isotope data from terrestrial organic matter in Vasterival section (NW France). Terra Nova 2012, 24, 114.
Cycles of humid–dry climate conditions around the P/E boundary: new stable isotope data from terrestrial organic matter in Vasterival section (NW France).CrossRef | 1:CAS:528:DC%2BC38Xot1yjtLc%3D&md5=93b6dc9afe71ff4103ec71a5708b3271CAS | open url image1

[7]  Z. Wan, Stable Carbon and Nitrogen Isotopic Studies of Devonian Land Plants – An Indicator of Paleoclimate and Paleoenvironmental Changes 2012, Ph.D. thesis, University of Cincinnati.

[8]  D. B. Andreeva, M. Zech, B. Glaser, M. A. Erbajeva, G. D. Chimitdorgieva, O. D. Ermakova, W. Zech, Stable isotope (δ13C, δ15N, δ18O) record of soils in Buryatia, southern Siberia: implications for biogeochemical and paleoclimatic interpretations. Quat. Int. 2013, 290–291, 82.
Stable isotope (δ13C, δ15N, δ18O) record of soils in Buryatia, southern Siberia: implications for biogeochemical and paleoclimatic interpretations.CrossRef | open url image1

[9]  H. Knicker, Stabilization of N compounds in soil and organic-matter-rich sediments – what is the difference? Org. Geochem. 2004, 92, 167.
| 1:CAS:528:DC%2BD2cXhtVChsLzO&md5=17090d87e40e163d6fb49a84b088acd2CAS | open url image1

[10]  M. Vandenbroucke, C. Largeau, Kerogen origin, evolution and structure. Org. Geochem. 2007, 38, 719.
Kerogen origin, evolution and structure.CrossRef | 1:CAS:528:DC%2BD2sXks12jsrY%3D&md5=8f0ce99bfa2faac1405215549be088f9CAS | open url image1

[11]  R. V. Tyson, Sedimentary Organic Matter 1995 (Chapman and Hall: London).

[12]  M. F. Lehmann, S. M. Bernasconi, A. Barbieri, J. A. McKenzie, Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmochim. Acta 2002, 66, 3573.
Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis.CrossRef | 1:CAS:528:DC%2BD38XnsFOku7w%3D&md5=b402dd528755d4a7b351e8cb59a95040CAS | open url image1

[13]  F. Baudin, N. Tribovillard, J. Trichet, Géologie de la Matière Organique 2007 (Vuibert: Paris, France).

[14]  E. C. Spiker, P. G. Hatcher, The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood. Geochim. Cosmochim. Acta 1987, 51, 1385.
The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood.CrossRef | 1:CAS:528:DyaL2sXks1ans7w%3D&md5=8ec7680653c0674a4e7721f95a80cb36CAS | open url image1

[15]  J. M. Melillo, J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, K. J. Nadelhoffer, Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter, in Ecology of Arable Land – Perspectives and Challenges (Eds M. Clarholm, L. Bergström) 1989, pp. 53–62 (Springer: The Netherlands).

[16]  A. L. Bates, E. C. Spiker, Chemical changes and carbon isotope variations in a cross-section of a large Miocene gymnospermous log. Chem. Geol. Isot. Geosci. Sect. 1992, 101, 247.
Chemical changes and carbon isotope variations in a cross-section of a large Miocene gymnospermous log.CrossRef | 1:CAS:528:DyaK38XmsFGit70%3D&md5=737f5ca5bdbf5386e065ae9137481880CAS | open url image1

[17]  P. Meyers, M. Leenheer, R. Bourbonniere, Diagenesis of vascular plant organic matter components during burial in lake sediments. Aquat. Geochem. 1995, 1, 35.
Diagenesis of vascular plant organic matter components during burial in lake sediments.CrossRef | 1:CAS:528:DyaK2MXnvF2jurg%3D&md5=9f7a1ed6bd97d6c1ae00500b77936d28CAS | open url image1

[18]  G. H. Schleser, J. Frielingsdorf, A. Blair, Carbon isotope behaviour in wood and cellulose during artificial aging. Chem. Geol. 1999, 158, 121.
Carbon isotope behaviour in wood and cellulose during artificial aging.CrossRef | 1:CAS:528:DyaK1MXis1akt7o%3D&md5=2fbfe163eedb6d82c02acccfff5f3c3aCAS | open url image1

[19]  J. M. Melillo, R. J. Naiman, J. D. Aber, A. E. Linkins, Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bull. Mar. Sci. 1984, 35, 341. open url image1

[20]  T. Freudenthal, T. Wagner, F. Wenzhöfer, M. Zabel, G. Wefer, Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes. Geochim. Cosmochim. Acta 2001, 65, 1795.
Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes.CrossRef | 1:CAS:528:DC%2BD3MXjs1yktb4%3D&md5=9b6d76f54d54850819636713780fb83cCAS | open url image1

[21]  B. Berg, R. Laskowski, Litter Decomposition: a Guide to Carbon and Nutrient Turnover. Advances in Ecological Research 2005 (Elsevier Academic Press: Amsterdam).

[22]  F. L. Bunnell, D. E. N. Tait, P. W. Flanagan, K. Van Clever, Microbial respiration and substrate weight loss – I. Soil Biol. Biochem. 1977, 9, 33.
Microbial respiration and substrate weight loss – I.CrossRef | 1:CAS:528:DyaE2sXlt1Gltg%3D%3D&md5=92b1b11a5367c2d2ef8b248ecb989073CAS | open url image1

[23]  R. Benner, M. L. Fogel, E. K. Sprague, Diagenesis of belowground biomass of Spartina alterniflora in salt-marsh sediments. Limnol. Oceanogr. 1991, 36, 1358.
Diagenesis of belowground biomass of Spartina alterniflora in salt-marsh sediments.CrossRef | 1:CAS:528:DyaK38XisVWns70%3D&md5=946df0a85d4d01730d74ff56da149f81CAS | open url image1

[24]  S. L. Connin, X. Feng, R. A. Virginia, Isotopic discrimination during long-term decomposition in an arid land ecosystem. Soil Biol. Biochem. 2001, 33, 41.
Isotopic discrimination during long-term decomposition in an arid land ecosystem.CrossRef | 1:CAS:528:DC%2BD3MXms1Wnuw%3D%3D&md5=5003f39b4ba321416e001bc3d06e2ee6CAS | open url image1

[25]  M. G. Kramer, P. Sollins, R. S. Sletten, P. K. Swart, N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 2003, 84, 2021.
N isotope fractionation and measures of organic matter alteration during decomposition.CrossRef | open url image1

[26]  T. Asada, B. Warner, R. Aravena, Effects of the early stage of decomposition on change in carbon and nitrogen isotopes in sphagnum litter. J. Plant Interact. 2005, 1, 229.
Effects of the early stage of decomposition on change in carbon and nitrogen isotopes in sphagnum litter.CrossRef | 1:CAS:528:DC%2BD2sXhtlKiurbE&md5=a224e8dbba419ac3c285919fd06babbbCAS | open url image1

[27]  A. T. Austin, C. L. Ballaré, Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2010, 107, 4618.
Dual role of lignin in plant litter decomposition in terrestrial ecosystems.CrossRef | 1:CAS:528:DC%2BC3cXjs1emurY%3D&md5=d3ef10604ba5750a553206c064083d6cCAS | 20176940PubMed | open url image1

[28]  T. Z. Lerch, N. Nunan, M. -F. Dignac, C. Chenu, A. Mariotti, Variations in microbial isotopic fractionation during soil organic matter decomposition. Biogeochemistry 2011, 106, 5.
Variations in microbial isotopic fractionation during soil organic matter decomposition.CrossRef | 1:CAS:528:DC%2BC3MXht1ajsrzO&md5=99aa83db300c1bbc16e269f3012f0710CAS | open url image1

[29]  D. C. Steart, D. R. Greenwood, P. I. Boon, The chemical constraints upon leaf decay rates: taphonomic implications among leaf species in Australian terrestrial and aquatic environments. Rev. Palaeobot. Palynol. 2009, 157, 358.
The chemical constraints upon leaf decay rates: taphonomic implications among leaf species in Australian terrestrial and aquatic environments.CrossRef | open url image1

[30]  L. Bragazza, P. Iacumin, C. Siffi, R. Gerdol, Seasonal variation in nitrogen isotopic composition of bog plant litter during 3 years of field decomposition. Biol. Fertil. Soils 2010, 46, 877.
Seasonal variation in nitrogen isotopic composition of bog plant litter during 3 years of field decomposition.CrossRef | 1:CAS:528:DC%2BC3cXhtF2ru7nK&md5=dcb8bf7592866e902ff0666701fece43CAS | open url image1

[31]  Y. Fukasawa, S. Katsumata, A. S. Mori, T. Osono, H. Takeda, Accumulation and decay dynamics of coarse woody debris in a Japanese old-growth subalpine coniferous forest. Ecol. Res. 2014, 29, 257.
Accumulation and decay dynamics of coarse woody debris in a Japanese old-growth subalpine coniferous forest.CrossRef | open url image1

[32]  K. E. -L. Eriksson, R. Blanchette, P. Ander, Microbial and Enzymatic Degradation of Wood and Wood Components 1990 (Springer-Verlag: Berlin).

[33]  A. T. Martínez, M. Speranza, F. J. Ruiz-Dueñas, P. Ferreira, S. Camarero, F. Guillén, M. J. Martínez, A. Gutiérrez, J. C. del Río, Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 2005, 8, 195.
| 16200498PubMed | open url image1

[34]  M. Philippe, F. Thévenard, Distribution and palaeoecology of the Mesozoic wood genus Xenoxylon: palaeoclimatological implications for the Jurassic of western Europe. Rev. Palaeobot. Palynol. 1996, 91, 353.
Distribution and palaeoecology of the Mesozoic wood genus Xenoxylon: palaeoclimatological implications for the Jurassic of western Europe.CrossRef | open url image1

[35]  L. Marynowski, M. Philippe, M. Zaton, Y. Hautevelle, Systematic relationships of the Mesozoic wood genus Xenoxylon: an integrative biomolecular and palaeobotanical approach. Neues Jahrb. Für Geol. Paläontol. 2008, 247, 177.
Systematic relationships of the Mesozoic wood genus Xenoxylon: an integrative biomolecular and palaeobotanical approach.CrossRef | open url image1

[36]  S. R. Poulson, C. P. Chamberlain, A. J. Friedland, Nitrogen isotope variation of tree rings as a potential indicator of environmental change. Chem. Geol. 1995, 125, 307.
Nitrogen isotope variation of tree rings as a potential indicator of environmental change.CrossRef | 1:CAS:528:DyaK2MXps1Wku7w%3D&md5=7a920bcac678eb2274adf651d24e25c4CAS | open url image1

[37]  A. R. Bukata, T. K. Kyser, Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles. Environ. Sci. Technol. 2007, 41, 1331.
Carbon and nitrogen isotope variations in tree-rings as records of perturbations in regional carbon and nitrogen cycles.CrossRef | 1:CAS:528:DC%2BD2sXktF2gtQ%3D%3D&md5=310d1f7c005c31de638e78cc3cfac53bCAS | 17593738PubMed | open url image1

[38]  S. W. Leavitt, Tree-ring C–H–O isotope variability and sampling. Sci. Total Environ. 2010, 408, 5244.
Tree-ring C–H–O isotope variability and sampling.CrossRef | 1:CAS:528:DC%2BC3cXhtFyju7rN&md5=e21602d5cdda2c99edeaa23b883bf865CAS | 20719360PubMed | open url image1

[39]  P. D. D. Fengel, Aging and fossilization of wood and its components. Wood Sci. Technol. 1991, 25, 153.
Aging and fossilization of wood and its components.CrossRef | 1:CAS:528:DyaK3MXlsFyjsLc%3D&md5=b4ce321564b7a0718c4a2ed2f16fe4bdCAS | open url image1

[40]  J. -M. Gobat, M. Aragno, W. Matthey, Le Sol Vivant: Bases de Pédologie, Biologie des Sols 2010 (PPUR Presses Polytechniques: Lausanne, Switzerland).

[41]  B. Thamdrup, New pathways and processes in the global nitrogen cycle. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 407.
New pathways and processes in the global nitrogen cycle.CrossRef | open url image1

[42]  R. Michener, K. Lajtha, Stable Isotopes in Ecology and Environmental Science (Eds R. Michener, K. Lajtha) 2007 (Blackwell Publishing: Oxford, UK).

[43]  S. Watkinson, D. Bebber, P. Darrah, M. Fricker, M. Tlalka, L. Boddy, The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor, in Fungi in Biogeochemical Cycles (G. M. Gadd) 2006, pp. 151–158 (Cambridge University Press: New York, NY).

[44]  D. P. Bebber, S. C. Watkinson, L. Boddy, P. R. Darrah, Simulated nitrogen deposition affects wood decomposition by cord-forming fungi. Oecologia 2011, 167, 1177.
Simulated nitrogen deposition affects wood decomposition by cord-forming fungi.CrossRef | 21735202PubMed | open url image1

[45]  M. L. Fogel, M. L. N. Tuross, Transformation of plant biochemicals to geological macromolecules during early diagenesis. Oecologia 1999, 120, 336.
Transformation of plant biochemicals to geological macromolecules during early diagenesis.CrossRef | open url image1

[46]  S. A. Macko, M. L. Fogel, P. E. Hare, T. C. Hoering, Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem. Geol. Isot. Geosci. Sect. 1987, 65, 79.
Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms.CrossRef | 1:CAS:528:DyaL2sXktVequr0%3D&md5=ebcde79d6eb9db01d53aa418c66eb66dCAS | open url image1

[47]  R. Laiho, C. E. Prescott, Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can. J. For. Res. 2004, 34, 763.
Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis.CrossRef | 1:CAS:528:DC%2BD2cXlt1Cjt7s%3D&md5=be349dbff9abe9e1df32101e53a2e018CAS | open url image1

[48]  B. S. Shridhar, Review: nitrogen-fixing microorganisms. International Journal of Microbiological Research 2012, 3, 46. open url image1

[49]  B. Zeller, C. Brechet, J. -P. Maurice, F. L. Tacon, 13C and 15N isotopic fractionation in trees, soils and fungi in a natural forest stand and a Norway spruce plantation. Ann. For. Sci. 2007, 64, 419.
13C and 15N isotopic fractionation in trees, soils and fungi in a natural forest stand and a Norway spruce plantation.CrossRef | 1:CAS:528:DC%2BD2sXot1Wjtbs%3D&md5=6fcda64c8216878be39fca584ed03e51CAS | open url image1

[50]  P. Dijkstra, C. M. LaViolette, J. S. Coyle, R. R. Doucett, E. Schwartz, S. C. Hart, B. A. Hungate, 15N enrichment as an integrator of the effects of C and N on microbial metabolism and ecosystem function. Ecol. Lett. 2008, 11, 389.
15N enrichment as an integrator of the effects of C and N on microbial metabolism and ecosystem function.CrossRef | 18279356PubMed | open url image1

[51]  E. A. Hobbie, L. T. A. van Diepen, E. A. Lilleskov, A. P. Ouimette, A. C. Finzi, K. S. Hofmockel, Fungal functioning in a pine forest: evidence from a 15N-labeled global change experiment. New Phytol. 2014, 201, 1431.
Fungal functioning in a pine forest: evidence from a 15N-labeled global change experiment.CrossRef | 1:CAS:528:DC%2BC2cXitVehu7w%3D&md5=105abcfaa601ebe005f0900ce36fc471CAS | 24304469PubMed | open url image1

[52]  C. D. Keeling, The concentrations and isotopic abundances of atmospheric carbon dioxide in rural and marine air. Geochim. Cosmochim. Acta 1961, 24, 277.
The concentrations and isotopic abundances of atmospheric carbon dioxide in rural and marine air.CrossRef | 1:CAS:528:DyaF38XhtF2msA%3D%3D&md5=2d1e326914f5ef61a0848bb2eefaaa77CAS | open url image1

[53]  M. Sebilo, G. Billen, M. Grably, A. Mariotti, Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry 2003, 63, 35.
Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system.CrossRef | 1:CAS:528:DC%2BD3sXjtVGrtrc%3D&md5=d4cd8cdc91b3c2822a202ae378b4c022CAS | open url image1

[54]  J. B. Miller, P. P. Tans, Calculating isotopic fractionation from atmospheric measurements at various scales. Tellus 2003, 55, 207.
Calculating isotopic fractionation from atmospheric measurements at various scales.CrossRef | open url image1

[55]  B. Z. Houlton, D. M. Sigman, E. A. G. Schuur, L. O. Hedin, A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc. Natl. Acad. Sci. USA 2007, 104, 8902.
A climate-driven switch in plant nitrogen acquisition within tropical forest communities.CrossRef | 1:CAS:528:DC%2BD2sXmt1Wns7o%3D&md5=75b88a79ab57c848d3cbfac73710dc58CAS | 17502607PubMed | open url image1

[56]  M. Kienast, Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle: global implications. Paleoceanography 2000, 15, 244.
Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle: global implications.CrossRef | open url image1

[57]  R. S. Robinson, M. Kienast, A. Luiza Albuquerque, M. Altabet, S. Contreras, R. De Pol Holz, N. Dubois, R. Francois, E. Galbraith, T. -C. Hsu, T. Ivanochko, S. Jaccard, S. Ji Kao, T. Kiefer, S. Kienast, M. Lehmann, P. Martinez, M. McCarthy, J. Möbius, T. Pedersen, T. M. Quan, E. Ryabenko, A. Schmittner, R. Schneider, A. Schneider-Mor, M. Shigemitsu, D. Sinclair, C. Somes, A. Studer, R. Thunell, J. Y. Yang, A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 2012, 27, PA4203.
A review of nitrogen isotopic alteration in marine sediments.CrossRef | open url image1

[58]  V. Gälman, J. Rydberg, C. Bigler, Decadal diagenetic effects on δ13C and δ15N studied in varved lake sediment. Limnol. Oceanogr. 2009, 54, 917.
Decadal diagenetic effects on δ13C and δ15N studied in varved lake sediment.CrossRef | open url image1

[59]  J. -P. Boudou, A. Schimmelmann, M. Ader, M. Mastalerz, M. Sebilo, L. Gengembre, Organic nitrogen chemistry during low-grade metamorphism. Geochim. Cosmochim. Acta 2008, 72, 1199.
Organic nitrogen chemistry during low-grade metamorphism.CrossRef | 1:CAS:528:DC%2BD1cXhs1OntLc%3D&md5=ae6e316168f8dfe2965f257812d5467bCAS | open url image1

[60]  J. M. Craine, E. N. J. Brookshire, M. D. Cramer, N. J. Hasselquist, K. Koba, E. Marin-Spiotta, L. Wang, Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 2015, 396, 1.
Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils.CrossRef | 1:CAS:528:DC%2BC2MXhtVSqtb7N&md5=ab131760e0a927a7fdcc6934b149cc7cCAS | open url image1



Supplementary MaterialSupplementary Material (714 KB) Export Citation