Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Impacts of elevated pCO2 on trace gas emissions in two microalgae: Phaeocystis globosa and Nitzschia closterium

Pei-Feng Li A , Gui-Peng Yang A B D , Jing Zhang A , Maurice Levasseur C , Chun-Ying Liu A , Jing Sun A and Wei Yang A
+ Author Affiliations
- Author Affiliations

A Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education/Qingdao Collaborative Innovation Centre of Marine Science and Technology, Qingdao 266100, China.

B Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.

C Université Laval, Department of Biology (Québec-Océan), Québec, QC, G1K 7P4, Canada.

D Corresponding author. Email: gpyang@ouc.edu.cn

Environmental Chemistry 14(7) 425-441 https://doi.org/10.1071/EN17130
Submitted: 2 April 2017  Accepted: 29 September 2017   Published: 31 January 2018

Environmental context. Ocean acidification can affect marine microalgae, which can produce climate-active trace gases such as dimethylsulfide and various halocarbons. We conducted monoculture experiments simulating future ocean acidification, and showed that trace gas emissions are affected by elevated pCO2 to different degrees. The responses of trace gases to elevated pCO2 are compound- and species-specific.

Abstract. The potential impacts of seawater acidification on the concentrations of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP), dissolved acrylic acid (AAd) and various volatile halocarbons, including CH3Cl, CHBr3, CH2Br2, CHBr2Cl, CHBrCl2 and CH3I, were examined during a laboratory CO2 perturbation experiment for the microalgae Phaeocystis globosa and Nitzschia closterium. The microalgae were exposed to ambient CO2 conditions (390–540 µatm; 1 µatm = 0.1 Pa) and to projected concentrations for the end of the century (760–1000 µatm, high carbon (HC)). The growth rate of the two species remained unaffected by elevated CO2. Results showed a 48 and 37 % decline in the DMS concentration normalised to cell density in P. globosa and N. closterium cultures in the HC treatment compared with the ambient treatment. No significant difference was observed for DMSPp and DMSPd in the two microalgae cultures between the two CO2 levels. The mean AAd concentrations in the P. globosa culture showed a 28 % decline in the HC treatment. By contrast, the cell-normalised concentrations of AAd in the HC treatment were 45 % lower than in the ambient treatment in N. closterium cultures. No CO2-induced effects were observed for CH3Cl, CHBr3, CHBr2Cl, CHBrCl2 and CH3I, but cell-normalised concentrations of CH2Br2 in N. closterium cultures showed a 32 % decline in the HC treatment relative to the ambient level. These results show that the metabolism processes responsible for the production of climate-active gases in phytoplankton may be affected by high CO2 levels. There may be a potential delay in the responses of trace gas emissions to elevated pCO2.


References

[1]  D. A. Wolf-Gladrow, U. Riebesell, S. Burkhardt, J. Bijma, Direct effects of CO2 concentration on growth and isotopic composition of marine plankton Tellus B Chem. Phys. Meterol. 1999, 51, 461.
Direct effects of CO2 concentration on growth and isotopic composition of marine planktonCrossRef |

[2]  K. Caldeira, M. E. Wickett, Oceanography: anthropogenic carbon and ocean pH Nature 2003, 425, 365.
Oceanography: anthropogenic carbon and ocean pHCrossRef | 1:CAS:528:DC%2BD3sXnsV2ktrs%3D&md5=be492c5cf4c0176b0ad86473aa14a0b3CAS |

[3]  J. C. Orr, V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R. G. Najjar, G. K. Plattner, K. B. Rodgers, C. L. Sabine, J. L. Sarmiento, R. Schlitzer, R. D. Slater, I. J. Totterdell, M. F. Weirig, Y. Yamanaka, A. Yool, Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms Nature 2005, 437, 681.
Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organismsCrossRef | 1:CAS:528:DC%2BD2MXhtVCjsL%2FE&md5=b0b8d3d6347f24ec6da23d40bc95c508CAS |

[4]  J. A. Raven, K. Caldeira, H. E. Elderfield, O. Hoegh-Guldberg, P. S. Liss, U. Riebesell, J. Shepherd, C. Turley, A. Watson, Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide 2005 (Royal Society: London, UK).

[5]  R. A. Feely, S. C. Doney, S. R. Cooley, Ocean acidification: present conditions and future changes in a high-CO2 world Oceanography 2009, 22, 36.
Ocean acidification: present conditions and future changes in a high-CO2 worldCrossRef |

[6]  U. Riebesell, I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe, F. M. M. Morel, Reduced calcification of marine plankton in response to increased atmospheric CO2 Nature 2000, 407, 364.
Reduced calcification of marine plankton in response to increased atmospheric CO2CrossRef | 1:CAS:528:DC%2BD3cXntFyrs7o%3D&md5=8e8a60c6ba754249fe2430657134eaaeCAS |

[7]  D. A. Hutchins, F. X. Fu, Y. Zhang, M. E. Warner, Y. Feng, K. Portune, P. W. Bernhardt, M. R. Mulholland, CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry Limnol. Oceanogr. 2007, 61, 36.

[8]  S. Burkhardt, I. Zondervan, U. Riebesell, Effect of CO2 concentration on the C : N : P ratio in marine phytoplankton: a species comparison Limnol. Oceanogr. 1999, 44, 683.
Effect of CO2 concentration on the C : N : P ratio in marine phytoplankton: a species comparisonCrossRef | 1:CAS:528:DyaK1MXjs1yjs7g%3D&md5=f521ece2b5cefc93236e95119fe5aa0aCAS |

[9]  P. D. Tortell, R. D. Giocoma, D. M. Sigman, F. M. M. Morel, CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage Mar. Ecol. Prog. Ser. 2002, 236, 37.
CO2 effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblageCrossRef |

[10]  A. Vairavamurthy, M. O. Andreae, R. L. Iverson, Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations Limnol. Oceanogr. 1985, 30, 59.
Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variationsCrossRef | 1:CAS:528:DyaL2MXht1ymtb4%3D&md5=b971bb3886fb3188f5528255edb44ee4CAS |

[11]  M. Levasseur, Impact of Arctic meltdown on microbial cycling of sulphur Nat. Geosci. 2013, 6, 691.
Impact of Arctic meltdown on microbial cycling of sulphurCrossRef | 1:CAS:528:DC%2BC3sXhtlCgtr%2FP&md5=7d94723f065d5eae2cfc4bb6380e8defCAS |

[12]  S. Strom, G. Wolfe, J. Holmes, H. Stecher, C. Shimeneck, S. Lambert, E. Moreno, Chemical defense in the microplankton I: Feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi Limnol. Oceanogr. 2003, 48, 217.
Chemical defense in the microplankton I: Feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyiCrossRef | 1:CAS:528:DC%2BD3sXhtVGrurg%3D&md5=e27930dd993fe766668fcd0cb5ba1f77CAS |

[13]  J. R. Seymour, R. Simó, T. Ahmed, R. Stocker, Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web Science 2010, 329, 342.
Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food webCrossRef | 1:CAS:528:DC%2BC3cXosl2iu70%3D&md5=b827b37638846c6674288edfcdb8620dCAS |

[14]  M. Garren, K. Son, J.-B. Raina, R. Rusconi, F. Menolascina, O. H. Shapiro, J. Tout, D. G. Bourne, J. R. Seymour, R. Stocker, A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals ISME J. 2014, 8, 999.
A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed coralsCrossRef | 1:CAS:528:DC%2BC2cXmvV2htbg%3D&md5=1ea076cd3ba52265a5d9e2635ed84a60CAS |

[15]  W. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman, An antioxidant function for DMSP and DMS in marine algae Nature 2002, 418, 317.
An antioxidant function for DMSP and DMS in marine algaeCrossRef | 1:CAS:528:DC%2BD38XltlGms7k%3D&md5=7d075d940f81b8388deb5e8ebae9b3cfCAS |

[16]  R. Simó, M. Vila-Costa, L. Alonso-Saéz, C. Cardelús, Ó. Guadayol, E. Vázquez-Dominguez, J. M. Gasol, Annual DMSP contribution to S and C fluxes through phytoplankton and bacterioplankton in a NW Mediterranean coastal site Aquat. Microb. Ecol. 2009, 57, 43.
Annual DMSP contribution to S and C fluxes through phytoplankton and bacterioplankton in a NW Mediterranean coastal siteCrossRef |

[17]  R. P. Kiene, L. J. Linn, J. A. Bruton, New and important roles for DMSP in marine microbial communities J. Sea Res. 2000, 43, 209.
New and important roles for DMSP in marine microbial communitiesCrossRef | 1:CAS:528:DC%2BD3cXms1Wrtbw%3D&md5=befe52b19df4060cbb69d4a56e129086CAS |

[18]  M. O. Andreae, Ocean–atmosphere interactions in the global biogeochemical sulfur cycle Mar. Chem. 1990, 30, 1.
Ocean–atmosphere interactions in the global biogeochemical sulfur cycleCrossRef | 1:CAS:528:DyaK3cXlslOksbw%3D&md5=fa2ff4ca720d991c7a5b5f66982bb095CAS |

[19]  S. Watanabe, H. Yamamoto, S. Tsunogai, Dimethylsulfide widely varying in surface water of the eastern North Pacific Mar. Chem. 1995, 51, 253.
Dimethylsulfide widely varying in surface water of the eastern North PacificCrossRef | 1:CAS:528:DyaK2MXpslKmt7o%3D&md5=69d66862963283f3836834a0b5cbd4b0CAS |

[20]  S. M. Turner, G. Malin, P. D. Nightingale, P. S. Liss, Seasonal variation of dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphere Mar. Chem. 1996, 54, 245.
Seasonal variation of dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphereCrossRef | 1:CAS:528:DyaK28Xmt1alt78%3D&md5=1cee83436b7f67908574dd748b0ef9baCAS |

[21]  G.-P. Yang, Z.-B. Zhang, L.-S. Liu, X.-T. Liu, Study on the analysis and distribution of dimethyl sulfide in the East China Sea Chin. J. Oceanology Limnol. 1996, 14, 141.
Study on the analysis and distribution of dimethyl sulfide in the East China SeaCrossRef | 1:CAS:528:DyaK28XlslSqsrw%3D&md5=752691e612b868085e4b500ecfdc7b8eCAS |

[22]  R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Wakeham, Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate Nature 1987, 326, 655.
Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climateCrossRef | 1:CAS:528:DyaL2sXitVWgsb8%3D&md5=276babd29068432e089594e2161f885cCAS |

[23]  P. K. Quinn, T. S. Bates, The case against climate regulation via oceanic phytoplankton sulphur emissions Nature 2011, 480, 51.
The case against climate regulation via oceanic phytoplankton sulphur emissionsCrossRef | 1:CAS:528:DC%2BC3MXhsFGku73O&md5=84bdec1fcabe8495c6970da15bac0a9fCAS |

[24]  A. Lana, T. G. Bell, R. Simó, S. M. Vallina, J. Ballabrera-Poy, A. J. Kettle, J. Dachs, L. Bopp, E. S. Saltzman, J. Stefels, J. E. Johnson, P. S. Liss, An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean Global Biogeochem. Cycles 2011, 25, GB1004.
An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global oceanCrossRef |

[25]  J. M. Sieburth, Acrylic acid, an ‘antibiotic’ principle in Phaeocystis blooms in Antarctic waters Science 1960, 132, 676.
Acrylic acid, an ‘antibiotic’ principle in Phaeocystis blooms in Antarctic watersCrossRef | 1:CAS:528:DyaF3MXhtF2gsbY%3D&md5=c3c4a3d74d719efc3c06601f181755ccCAS |

[26]  D. M. Slezak, S. Puskaric, G. J. Herndl, Potential role of acrylic acid in bacterioplankton communities in the sea Mar. Ecol. Prog. Ser. 1994, 105, 191.
Potential role of acrylic acid in bacterioplankton communities in the seaCrossRef | 1:CAS:528:DyaK2cXktFOhs7o%3D&md5=e6627e9ba015cc01f3e408ac08958b82CAS |

[27]  C. Evans, G. Malin, W. H. Wilson, P. S. Liss, Infectious titres of Emiliania huxleyi virus 86 are reduced by exposure to millimolar dimethyl sulfide and acrylic acid Limnol. Oceanogr. 2006, 51, 2468.
Infectious titres of Emiliania huxleyi virus 86 are reduced by exposure to millimolar dimethyl sulfide and acrylic acidCrossRef | 1:CAS:528:DC%2BD28XhtVOisr7I&md5=156eefe35e8440f45770534ed3aefa35CAS |

[28]  D. A. Wolf-Gladrow, U. Riebesell, S. Burkhardt, J. Bijma, Direct effects of CO2 concentration on growth and isotopic composition of marine plankton Tellus B Chem. Phys. Meterol. 1999, 51, 461.
Direct effects of CO2 concentration on growth and isotopic composition of marine planktonCrossRef |

[29]  C. Evans, S. V. Kadner, L. J. Darroch, The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study Limnol. Oceanogr. 2007, 52, 1036.
The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture studyCrossRef |

[30]  J. E. Lovelock, R. J. Maggs, Halogenated hydrocarbons in and over the Atlantic Nature 1973, 241, 194.
Halogenated hydrocarbons in and over the AtlanticCrossRef | 1:CAS:528:DyaE3sXhtVWlt7g%3D&md5=90baa28a683973c8a676076d239f80aeCAS |

[31]  J. E. Lovelock, Natural halocarbons in the air and in the sea Nature 1975, 256, 193.
Natural halocarbons in the air and in the seaCrossRef | 1:CAS:528:DyaE28Xnslahsg%3D%3D&md5=23b0f5595e28c7e374344cbe6195f1c1CAS |

[32]  P. D. Nightingale, G. Malin, P. S. Liss, Production of chloroform and other low-molecular weight halocarbons by some species of macroalgae Limnol. Oceanogr. 1995, 40, 680.
Production of chloroform and other low-molecular weight halocarbons by some species of macroalgaeCrossRef | 1:CAS:528:DyaK2MXos1GmsLs%3D&md5=615c2063909b9e72a5795ac31bac6d06CAS |

[33]  R. Roy, Short-term variability in halocarbons in relation to phytoplankton pigments in coastal waters of the central eastern Arabian Sea Estuar. Coast. Shelf Sci. 2010, 88, 311.
Short-term variability in halocarbons in relation to phytoplankton pigments in coastal waters of the central eastern Arabian SeaCrossRef | 1:CAS:528:DC%2BC3cXnt1alu7Y%3D&md5=799a4d172c6ef094512c2f8f06bb4bd3CAS |

[34]  C. Hughes, D. J. Franklin, G. Malin, Iodomethane production by two important marine cyanobacteria: Prochlorococcus marinus (CCMP 2389) and Synechococcus sp. (CCMP 2370) Mar. Chem. 2011, 125, 19.
Iodomethane production by two important marine cyanobacteria: Prochlorococcus marinus (CCMP 2389) and Synechococcus sp. (CCMP 2370)CrossRef | 1:CAS:528:DC%2BC3MXlslWmsr4%3D&md5=07dbc56e01c83d534e0005b3e22d093cCAS |

[35]  B. Giese, F. Laturnus, F. C. Adams, C. Wiencke, Release of volatile iodinated C1–C4 hydrocarbons by marine macroalgae from various climate zones Environ. Sci. Technol. 1999, 33, 2432.
Release of volatile iodinated C1–C4 hydrocarbons by marine macroalgae from various climate zonesCrossRef | 1:CAS:528:DyaK1MXjsFCqtr8%3D&md5=b1d8f2cd0423f39ff9eeba256ae0251dCAS |

[36]  C. D. O’Dowd, J. L. Jimenez, R. Bahreini, R. C. Flagan, J. H. Seinfeld, K. Hameri, L. Pirjola, M. Kulmala, S. G. Jennings, T. Hoffmann, Marine aerosol formation from biogenic iodine emissions Nature 2002, 417, 632.
Marine aerosol formation from biogenic iodine emissionsCrossRef | 1:CAS:528:DC%2BD38Xkt1eksbk%3D&md5=0dd3cc98e8e94459e54be83f0341d66cCAS |

[37]  K. D. Goodwin, W. J. North, M. E. Lidstrom, Production of bromoform and dibromomethane by giant kelp: factors affecting release and comparison to anthropogenic bromine sources Limnol. Oceanogr. 1997, 42, 1725.
Production of bromoform and dibromomethane by giant kelp: factors affecting release and comparison to anthropogenic bromine sourcesCrossRef | 1:CAS:528:DyaK1cXjtlejsrk%3D&md5=6ca0c7f7d5ab107a3ca9d2d594054d80CAS |

[38]  S. L. Manley, Phytogenesis of halomethanes: a product of selection or a metabolic accident? Biogeochemistry 2002, 60, 163.
Phytogenesis of halomethanes: a product of selection or a metabolic accident?CrossRef | 1:CAS:528:DC%2BD38XmtlGgtLw%3D&md5=c0cd6e202f02a0368d6409182714b199CAS |

[39]  N. Ohsawa, Y. Ogata, N. Okada, N. Itoh, Physiological function of bromoperoxidase in the red marine alga Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxide Phytochemistry 2001, 58, 683.
Physiological function of bromoperoxidase in the red marine alga Corallina pilulifera: production of bromoform as an allelochemical and the simultaneous elimination of hydrogen peroxideCrossRef | 1:CAS:528:DC%2BD3MXnslWnsr0%3D&md5=d471f06a3528d9e75165b0988bd775a1CAS |

[40]  R. M. Moore, O. C. Zafiriou, Photochemical production of methyl iodide in seawater J. Geophys. Res. 1994, 99, 16415.
Photochemical production of methyl iodide in seawaterCrossRef | 1:CAS:528:DyaK2cXms1ars7c%3D&md5=9201f281a3703bd91ceb894213c4835aCAS |

[41]  U. Richter, D. W. R. Wallace, Production of methyl iodide in the tropical Atlantic Ocean Geophys. Res. Lett. 2004, 31, L23S03.
Production of methyl iodide in the tropical Atlantic OceanCrossRef |

[42]  M. Martino, P. S. Liss, J. M. C. Plane, The photolysis of dihalomethanes in surface seawater Environ. Sci. Technol. 2005, 39, 7097.
The photolysis of dihalomethanes in surface seawaterCrossRef | 1:CAS:528:DC%2BD2MXmvFynu7s%3D&md5=2d92be6b6144364566b9000ac83679feCAS |

[43]  M. Martino, G. P. Mills, J. Woeltjen, P. S. Liss, A new source of volatile organoiodine compounds in surface seawater Geophys. Res. Lett. 2009, 36, L01609.
A new source of volatile organoiodine compounds in surface seawaterCrossRef |

[44]  C. J. Palmer, T. L. Anders, L. J. Carpenter, F. C. Küpper, G. B. McFiggans, Iodine and halocarbon response of Laminaria digitata to oxidative stress and links to atmospheric new particle production Environ. Chem. 2005, 2, 282.
Iodine and halocarbon response of Laminaria digitata to oxidative stress and links to atmospheric new particle productionCrossRef | 1:CAS:528:DC%2BD2MXht12gt7zF&md5=bb6d993a8b0febb16381ebce8b829d77CAS |

[45]  M. Vogt, M. Steinke, S. Turner, A. Paulino, M. Meyerh, U. Riebesell, C. LeQuéré, P. S. Liss, Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment Biogeosciences 2008, 5, 407.
Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experimentCrossRef | 1:CAS:528:DC%2BD1cXhtF2iurvF&md5=e5aa5094731365a11d3be97e78a41b1fCAS |

[46]  F. E. Hopkins, S. M. Turner, P. D. Nightingale, M. Steinke, D. Bakker, P. S. Liss, Ocean acidification and marine trace gas emissions Proc. Natl. Acad. Sci. USA 2010, 107, 760.
Ocean acidification and marine trace gas emissionsCrossRef | 1:CAS:528:DC%2BC3cXhtFCms7g%3D&md5=69c9e29122d87a2b6ecb4fb09ba89a65CAS |

[47]  V. Avgoustidi, P. D. Nightingale, I. Joint, M. Steinke, S. M. Turner, F. E. Hopkins, P. S. Liss, Decreased marine dimethyl sulfide production under elevated CO2 levels in mesocosm and in vitro studies Environ. Chem. 2012, 9, 399.
Decreased marine dimethyl sulfide production under elevated CO2 levels in mesocosm and in vitro studiesCrossRef | 1:CAS:528:DC%2BC38Xht1ajsbzM&md5=1eebf9180b227eacc13e989b1dd434faCAS |

[48]  S. D. Archer, S. A. Kimmance, J. A. Stephens, F. E. Hopkins, R. G. J. Bellerby, K. G. Schulz, J. Piontek, A. Engel, Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters Biogeosciences 2013, 10, 1893.
Contrasting responses of DMS and DMSP to ocean acidification in Arctic watersCrossRef | 1:CAS:528:DC%2BC2cXltlCmtb4%3D&md5=d4ffb043161f063459b9432c9a424503CAS |

[49]  K.-T. Park, K. Lee, K. Shin, E. J. Yang, B. Hyun, J.-M. Kim, J. H. Noh, M. Kim, B. Kong, D. C. Chio, P.-G. Jang, H. J. Jeong, Direct linkage between dimethylsulfide production and microzooplankton grazing, resulting from prey composition change under high partial pressure of carbon dioxide conditions Environ. Sci. Technol. 2014, 48, 4750.
Direct linkage between dimethylsulfide production and microzooplankton grazing, resulting from prey composition change under high partial pressure of carbon dioxide conditionsCrossRef | 1:CAS:528:DC%2BC2cXltlalt7w%3D&md5=b7e2cd95458a885340721ded45cc70b0CAS |

[50]  A. L. Webb, G. Malin, F. E. Hopkins, K. L. Ho, U. Riebesell, K. Z. Schulz, A. Larsen, P. S. Liss, Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions Environ. Chem. 2016, 13, 314.
Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactionsCrossRef | 1:CAS:528:DC%2BC28XksFGrsLw%3D&md5=feb759ad0383690ea6fba8d789086bccCAS |

[51]  A. L. Webb, E. Leedham-Elvidge, C. Hughes, F. E. Hopkins, G. Malin, L. T. Bach, K. Schulz, K. Crawfurd, C. P. D. Brussaard, A. Stuhr, U. Riebesell, P. S. Liss, Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community Biogeosciences 2016, 13, 4595.
Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton communityCrossRef |

[52]  O. W. Wingenter, K. B. Haase, M. Zeigler, D. R. Blake, F. S. Rowland, B. C. Sive, A. Paulino, R. Thyrhaug, A. Larsen, K. Schulz, M. Meyerhöfer, U. Riebesell, Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: potential climate impacts Geophys. Res. Lett. 2007, 34, L05710.
Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: potential climate impactsCrossRef |

[53]  J.-M. Kim, K. Lee, E. J. Yang, K. Shin, J. H. Noh, K.-T. Park, B. Hyun, H.-J. Jeong, J.-H. Kim, K. Y. Kim, M. Kim, H.-C. Kim, P.-G. Jang, M.-C. Jang, Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high-CO2 world Environ. Sci. Technol. 2010, 44, 8140.
Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high-CO2 worldCrossRef | 1:CAS:528:DC%2BC3cXht1akt7rI&md5=afc1df51573cb6605837d6a00cdc5ecdCAS |

[54]  F. E. Hopkins, S. D. Archer, Consistent increase in dimethylsulphide (DMS) in response to high CO2 in five shipboard bioassays from contrasting NW European waters Biogeosciences Discuss. 2014, 11, 2267.
Consistent increase in dimethylsulphide (DMS) in response to high CO2 in five shipboard bioassays from contrasting NW European watersCrossRef |

[55]  V. Avgoustidi, Dimethyl Sulphide Production in a High CO2 World 2006, PhD dissertation, University of East Anglia, Norwich, UK.

[56]  H. Arnold, H. Kerrison, M. Steinke, Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi Glob. Change Biol. 2013, 19, 1007.
Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyiCrossRef | 1:STN:280:DC%2BC3sjntlOrsg%3D%3D&md5=315539d971d8f31743eba3e1bc8b8cfeCAS |

[57]  P. Kerrison, D. J. Suggett, L. J. Hepburn, M. Steinke, Effect of elevated pCO2 on the production of dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) in two species of Ulva (Chlorophyceae) Biogeochemistry 2012, 110, 5.
Effect of elevated pCO2 on the production of dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) in two species of Ulva (Chlorophyceae)CrossRef | 1:CAS:528:DC%2BC38XhsVCjt7vI&md5=b95ea012b245c12650d20fe8a9009006CAS |

[58]  F. E. Hopkins, S. A. Kimmance, J. A. Stephens, R. G. J. Bellerby, C. P. D. Brussaard, J. Czerny, K. G. Schulz, S. D. Archer, Response of halocarbons to ocean acidification in the Arctic Biogeosciences 2013, 10, 2331.
Response of halocarbons to ocean acidification in the ArcticCrossRef | 1:CAS:528:DC%2BC2cXltlGktrw%3D&md5=78c331070a85429faa20d7f23496796fCAS |

[59]  V. Schoemann, S. Becquevort, J. Stefels, V. Rousseau, C. Lancelot, Phaeocystis blooms in the global ocean and their controlling mechanisms: a review J. Sea Res. 2005, 53, 43.
Phaeocystis blooms in the global ocean and their controlling mechanisms: a reviewCrossRef | 1:CAS:528:DC%2BD2MXjsFSh&md5=48c94b7cf14c376ce67bebb8898be755CAS |

[60]  B. R. Mohapatra, A. N. Rellinger, D. J. Kieber, R. P. Kiene, Kinetics of DMSP lyases in whole cell extracts of four Phaeocystis species: response to temperature and DMSP analogs J. Sea Res. 2014, 86, 110.
Kinetics of DMSP lyases in whole cell extracts of four Phaeocystis species: response to temperature and DMSP analogsCrossRef |

[61]  D. M. Nelson, M. A. Tréguer, M. A. Brzezinski, A. Leynaert, B. Quéguiner, Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation Global Biogeochem. Cycles 1995, 9, 359.
Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentationCrossRef | 1:CAS:528:DyaK2MXotVKjsbo%3D&md5=441eec5988b7be2fffa4a701c5f3c4e5CAS |

[62]  C. B. Field, M. J. Behrenfeld, J. T. Randerson, P. Falkowski, Primary production of the biosphere: integrating terrestrial and oceanic components Science 1998, 281, 237.
Primary production of the biosphere: integrating terrestrial and oceanic componentsCrossRef | 1:CAS:528:DyaK1cXksFKitb0%3D&md5=3073a9a61d267f2d594c6ff2f39886f7CAS |

[63]  D. L. Hartmann, A. M. G. Klein Tank, M. Rusticucci, L. V. Alexander, S. Bronnimann, Y. Charabi, Observations: atmosphere and surface, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley) 2013, pp. 159–254 (Cambridge University Press: Cambridge, UK).

[64]  R. R. L. Guillard, Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Animals. (Eds W. L. Smith, M. H. Chanley) 1975, pp. 26–60 (Plenum Press: New York).

[65]  K. Gao, Y. Aruga, T. Ishihara, T. Akano, M. Kiyohara, Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations J. Appl. Phycol. 1991, 3, 355.
Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrationsCrossRef | 1:CAS:528:DyaK38XhsVOqsrs%3D&md5=1e81d6856816495ed1b515748fa58e61CAS |

[66]  S. W. Chen, K. S. Gao, Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae) Hydrobiologia 2011, 675, 105.
Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae)CrossRef | 1:CAS:528:DC%2BC3MXhtVWgsrfL&md5=d5579bdc59ecaf5544ff5f8c4dd7faefCAS |

[67]  J. LaRoche, B. Rost, A. Engel, Bioassays, batch culture and chemostat experimentation, in Guide to Best Practices in Ocean Acidification Research and Data Reporting (Eds U. Riebesell, V. J. Fabry, L. Hansson, J. Gattuso) 2010, pp. 81–94 (Luxembourg Press: Brussels, Belgium).

[68]  W. J. Cai, Y. C. Wang, The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia Limnol. Oceanogr. 1998, 43, 657.
The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, GeorgiaCrossRef | 1:CAS:528:DyaK1cXlsFWqsbk%3D&md5=56a2805a4a5f286c37ae5891dee35d49CAS |

[69]  D. E. Pierrot, E. Lewis, D. W. R. Wallace, MS Excel Program Developed for CO2 System Calculations Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy. 2006. Available at http://cdiac.ornl.gov/ftp/co2sys [Verified 13 December 2017].

[70]  C. Mehrbach, C. H. Culberson, J. E. Hawley, R. M. Pytkowicx, Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure Limnol. Oceanogr. 1973, 18, 897.
Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressureCrossRef | 1:CAS:528:DyaE2cXhtFansLk%3D&md5=e045ddba34cab1d401557958f58128e3CAS |

[71]  A. G. Dickson, F. J. A. Millero, Comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media Deep-Sea Res. 1987, 34, 1733.
Comparison of the equilibrium constants for the dissociation of carbonic acid in seawater mediaCrossRef | 1:CAS:528:DyaL1cXotFGjsg%3D%3D&md5=ce3dcee9cdd0638487eb458867267862CAS |

[72]  A. G. Dickson, Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K J. Chem. Thermodyn. 1990, 22, 113.
Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 KCrossRef | 1:CAS:528:DyaK3cXktFWksrY%3D&md5=a2e876703f6af241b24fdd75913d9ae6CAS |

[73]  G. P. Yang, M. Levasseur, S. Michaud, M. Scarratt, Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer and subsurface water of the western North Atlantic during spring Mar. Chem. 2005, 96, 315.
Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer and subsurface water of the western North Atlantic during springCrossRef | 1:CAS:528:DC%2BD2MXmvFGjtLo%3D&md5=fd628af9e46f26f34f511f7d0420749cCAS |

[74]  G. P. Yang, H. H. Zhang, L. P. Su, L. M. Zhou, Biogenic emission of dimethylsulfide (DMS) from the North Yellow Sea, China and its contribution to sulfate in aerosol during summer Atmos. Environ. 2009, 43, 2196.
Biogenic emission of dimethylsulfide (DMS) from the North Yellow Sea, China and its contribution to sulfate in aerosol during summerCrossRef | 1:CAS:528:DC%2BD1MXjslWks7g%3D&md5=f7966b745cde6e12890867368a96529eCAS |

[75]  G. P. Yang, H. H. Zhang, L. M. Zhou, J. Yang, Temporal and spatial variations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the East China Sea and the Yellow Sea Cont. Shelf Res. 2011, 31, 1325.
Temporal and spatial variations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the East China Sea and the Yellow SeaCrossRef |

[76]  J. W. H. Dacey, N. V. Blough, Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide Geophys. Res. Lett. 1987, 14, 1246.
Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfideCrossRef | 1:CAS:528:DyaL1cXhtFynsL8%3D&md5=6af10928d4c9c2ac5b8bb4ef0bc84b67CAS |

[77]  J. A. E. Gibson, K. M. Swadling, H. R. Burton, Acrylate and dimethylsulfoniopropionate (DMSP) concentrations during an Antarctic phytoplankton bloom, in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (Eds R. P. Kiene, P. T. Visscher, M. D. Keller, G. O. Kirst) 1996, pp. 213–222 (Springer: New York, NY).

[78]  G. P. Yang, X. L. Lu, G. S. Song, X. M. Wang, Purge-and-trap gas chromatography method for analysis of methyl chloride and methyl bromide in seawater Chin. J. Anal. Chem. 2010, 38, 719.
Purge-and-trap gas chromatography method for analysis of methyl chloride and methyl bromide in seawaterCrossRef | 1:CAS:528:DC%2BC3cXnslCrtr0%3D&md5=afdf3851d555d3f0cfe21f161407fe3fCAS |

[79]  Y. Wang, W. O. Smith, X. Wang, S. Li, Subtle biological responses to increased CO2 concentrations by Phaeocystis globosa Scherffel, a harmful algal bloom species Geophys. Res. Lett. 2010, 37, L09604.
Subtle biological responses to increased CO2 concentrations by Phaeocystis globosa Scherffel, a harmful algal bloom speciesCrossRef |

[80]  A. Hoogstraten, M. Peters, K. R. Timmermans, H. J. W. de Baar, Combined effects of inorganic carbon and light on Phaeocystis globosa Scherffel (Prymnesiophyceae) Biogeosciences 2012, 9, 1885.
Combined effects of inorganic carbon and light on Phaeocystis globosa Scherffel (Prymnesiophyceae)CrossRef | 1:CAS:528:DC%2BC38XhtlCrur3N&md5=049751c28b7ad56f9751157df781f395CAS |

[81]  A. Torstensson, M. Hedblom, M. M. Björk, M. Chierici, A. Wulff, Long-term acclimation to elevated pCO2 alters carbon metabolism and reduces growth in the Antarctic diatom Nitzschia lecointei Proc. Biol. Sci. 2015, 282, 20151513.
Long-term acclimation to elevated pCO2 alters carbon metabolism and reduces growth in the Antarctic diatom Nitzschia lecointeiCrossRef |

[82]  S. Jeyanthi, P. Santhanam, D. A. Shenbaga, A. Balamurugan, K. S. Dinesh, P. B. Balaji, Laboratory mesocosm studies on the response and potential effects of marine diatom Nitzschia sp. to ocean acidification Indian J. Geo-Mar. Sci. 2015, 44, 1559.

[83]  Y. P. Wu, K. S. Gao, U. Riebesell, CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum Biogeosciences 2010, 7, 2915.
CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutumCrossRef | 1:CAS:528:DC%2BC3cXhsFCns7jM&md5=5ac1d4e97f43bb3575f8fc3549aa8c66CAS |

[84]  U. Riebesell, Effects of CO2 enrichment on marine phytoplankton J. Oceanogr. 2004, 60, 719.
Effects of CO2 enrichment on marine phytoplanktonCrossRef | 1:CAS:528:DC%2BD2cXntVSjsLg%3D&md5=a9f8485b3cfd7b753a600296a68ae937CAS |

[85]  K. R. Hinga, Effects of pH on costal marine phytoplankton Mar. Ecol. Prog. Ser. 2002, 238, 281.
Effects of pH on costal marine phytoplanktonCrossRef |

[86]  D. M. Kramer, J. A. Cruz, A. Kanazawa, Balancing the central roles of the thylakoid proton gradient Trends Plant Sci. 2003, 8, 27.
Balancing the central roles of the thylakoid proton gradientCrossRef | 1:CAS:528:DC%2BD3sXnvFek&md5=7d4729b581481c708b60882edea3667cCAS |

[87]  A. J. Milligan, C. E. Mioni, F. M. M. Morel, Response of cell surface pH to pCO2 and iron limitation in the marine diatom Thalassiosira weissflogii Mar. Chem. 2009, 114, 31.
Response of cell surface pH to pCO2 and iron limitation in the marine diatom Thalassiosira weissflogiiCrossRef | 1:CAS:528:DC%2BD1MXmsFOns78%3D&md5=63dcc82583ccb3b09cb28ade0cec86ecCAS |

[88]  H. L. Burdett, E. Aloisio, P. Calosi, H. S. Findlay, S. Widdicombe, A. D. Hatton, N. A. Kamenos, The effect of chronic and acute low pH on the intracellular DMSP production and epithelial cell morphology of red coralline algae Mar. Biol. Res. 2012, 8, 756.
The effect of chronic and acute low pH on the intracellular DMSP production and epithelial cell morphology of red coralline algaeCrossRef |

[89]  S. Trimborn, N. Lundholm, S. Thoms, K. U. Richter, B. Krock, P. J. Hansen, B. Rost, Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry Physiol. Plant. 2008, 133, 92.
Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistryCrossRef | 1:CAS:528:DC%2BD1cXlvFeqsbg%3D&md5=477cef1a1ba76a9632062f57213357d1CAS |

[90]  A. McCarthy, S. P. Rogers, S. J. Duffy, D. A. Campbell, Elevated carbon dioxide differentially alters the photophysiology of Thalassiosira pseudonana (Bacillariophyceae) and Emiliania huxleyi (Haptophyta) J. Phycol. 2012, 48, 635.
Elevated carbon dioxide differentially alters the photophysiology of Thalassiosira pseudonana (Bacillariophyceae) and Emiliania huxleyi (Haptophyta)CrossRef | 1:CAS:528:DC%2BC38XhtFSrtbjF&md5=a8a669af7beab88b610880542bc6697dCAS |

[91]  A. Torstensson, M. Chierici, A. Wulff, The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula directa Polar Biol. 2012, 35, 205.
The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom Navicula directaCrossRef |

[92]  U. Riebesell, P. D. Tortell, Effects of ocean acidification on pelagic organisms and ecosystems, in Ocean Acidification (Eds J. P. Gattuso, L. Hanson) 2011, pp. 99–121 (Oxford University Press: Oxford, UK).

[93]  S. Burkhardt, G. Amoroso, U. Riebesell, D. Sültemeyer, CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations Limnol. Oceanogr. 2001, 46, 1378.
CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrationsCrossRef | 1:CAS:528:DC%2BD3MXnsVSktbs%3D&md5=9378451550b269dd27c6ad0597bdebbdCAS |

[94]  B. Rost, U. Riebesell, S. Burkhardt, D. Sültemeyer, Carbon acquisition of bloom-forming marine phytoplankton Limnol. Oceanogr. 2003, 48, 55.
Carbon acquisition of bloom-forming marine phytoplanktonCrossRef |

[95]  S. Chen, J. Beardall, K. Gao, A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions Biogeosciences 2014, 11, 4829.
A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functionsCrossRef |

[96]  R. P. Kiene, D. Slezak, Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis sampling Limnol. Oceanogr. Methods 2006, 4, 80.
Low dissolved DMSP concentrations in seawater revealed by small-volume gravity filtration and dialysis samplingCrossRef | 1:CAS:528:DC%2BD28XmtlWnt70%3D&md5=09e200dc6fa46f2fe6ae5790f3a916ddCAS |

[97]  A. Spielmeyer, G. Pohnert, Influence of temperature and elevated carbon dioxide on the production of dimethylsulfoniopropionate and glycine betaine by marine phytoplankton Mar. Environ. Res. 2012, 73, 62.
| 1:CAS:528:DC%2BC3MXhs1Oqs7nF&md5=bbbb3505d6a7936b648d0f5890d8abd2CAS |

[98]  M. D. Keller, Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size Biol. Oceanogr. 1989, 6, 375.

[99]  T. S. Bates, R. P. Kiene, G. V. Wolfe, P. A. Matrai, F. P. Chavez, K. R. Buck, B. W. Blomquist, R. L. Cuhel, The cycling the sulfur in surface seawater of the north-east Pacific J. Geophys. Res. 1994, 99, 7835.
The cycling the sulfur in surface seawater of the north-east PacificCrossRef | 1:CAS:528:DyaK2cXltFKqsbs%3D&md5=e99ea34ae7f02f5077e0eb0120914111CAS |

[100]  D. J. B. Noordkamp, M. Schotten, W. W. C. Gieskes, High acrylate concentrations in the mucus of Phaeocystis globosa colonies Aquat. Microb. Ecol. 1998, 16, 45.
High acrylate concentrations in the mucus of Phaeocystis globosa coloniesCrossRef |

[101]  A. R. J. Curson, J. D. Todd, M. J. Sullivan, A. W. B. Johnston, Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes Nat. Rev. Microbiol. 2011, 9, 849.
Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genesCrossRef | 1:CAS:528:DC%2BC3MXht12iurbE&md5=cf4242516590044b3585e76431671b8fCAS |

[102]  R. P. Kiene, G. Gerard, Evaluation of glycine betaine as an inhibitor of dissolved dimethylsulfoniopropionate degradation in coastal waters Mar. Ecol. Prog. Ser. 1995, 128, 121.
Evaluation of glycine betaine as an inhibitor of dissolved dimethylsulfoniopropionate degradation in coastal watersCrossRef | 1:CAS:528:DyaK28XhsFKmtbo%3D&md5=b3d9a9f73321f4933aa1312b2cabe0efCAS |

[103]  E. C. Howard, J. R. Henriksen, A. Buchan, C. R. Reisch, H. Bürgmann, R. Welsh, W. Ye, M. González, K. Mace, S. B. Joye, R. Kiene, W. B. Whitman, M. A. Moran, Bacterial taxa that limit sulphur flux from the ocean Science 2006, 314, 649.
Bacterial taxa that limit sulphur flux from the oceanCrossRef | 1:CAS:528:DC%2BD28XhtFeitr7M&md5=17b43eac35d9b88e3f6a92cdb8e62064CAS |

[104]  R. P. Kiene, L. J. Linn, J. A. Bruton, New and important roles for DMSP in marine microbial communities J. Sea Res. 2000, 43, 209.
New and important roles for DMSP in marine microbial communitiesCrossRef | 1:CAS:528:DC%2BD3cXms1Wrtbw%3D&md5=befe52b19df4060cbb69d4a56e129086CAS |

[105]  M. Vila-Costa, D. A. del Valle, J. M. González, D. Slezak, R. P. Kiene, O. Sánchez, R. Simó, Phylogenetic identification and metabolism of marine dimethylsulfide-consuming bacteria Environ. Microbiol. 2006, 8, 2189.
Phylogenetic identification and metabolism of marine dimethylsulfide-consuming bacteriaCrossRef | 1:CAS:528:DC%2BD2sXisl2gtQ%3D%3D&md5=da1646b32dd881d43e4ab383ad28626eCAS |

[106]  A. D. Hatton, D. M. Shenoy, M. C. Hart, A. Mogg, D. H. Green, Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea Biogeochemistry 2012, 110, 131.
Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoideaCrossRef | 1:CAS:528:DC%2BC38XhsVCjt7vF&md5=007c00f1b012bb1e71df5c48628d6182CAS |

[107]  A. R. J. Curson, R. Rogers, J. D. Todd, C. A. Brearley, A. W. B. Johnston, Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroides Environ. Microbiol. 2008, 10, 757.
Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter sphaeroidesCrossRef | 1:CAS:528:DC%2BD1cXjtVygsLs%3D&md5=b9d393f5dda4c1274eb0cf501a2cc909CAS |

[108]  S. Endres, L. Galgani, U. Riebesell, K.-G. Schulz, A. Engel, Stimulated bacterial growth under elevated pCO2: results from an off-shore mesocosm study PLoS One 2014, 9, e99228.
Stimulated bacterial growth under elevated pCO2: results from an off-shore mesocosm studyCrossRef |

[109]  R. Tokarczyk, R. M. Moore, Production of volatile organohalogens by phytoplankton cultures Geophys. Res. Lett. 1994, 21, 285.
Production of volatile organohalogens by phytoplankton culturesCrossRef | 1:CAS:528:DyaK2cXmsFSkuro%3D&md5=5f67f904b091c2a424cb5c9b278bd9deCAS |

[110]  J. Pike, X. Crosta, E. J. Maddison, H. Renssen, Observations on the relationship between the Antarctic coastal diatoms Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen and sea ice concentrations during the late Quaternary Mar. Micropaleontol. 2009, 73, 14.
Observations on the relationship between the Antarctic coastal diatoms Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen and sea ice concentrations during the late QuaternaryCrossRef |

[111]  A. Colomb, N. Yassaa, J. Williams, I. Peeken, K. Lochte, Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS) J. Environ. Monit. 2008, 10, 325.
Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS)CrossRef | 1:CAS:528:DC%2BD1cXjtVWisrg%3D&md5=bcc9f9716ce3e87dbc1a895e0d6863c5CAS |

[112]  R. Theiler, J. C. Cook, L. P. Hager, Halohydrocarbon synthesis by bromoperoxidase Science 1978, 202, 1094.
Halohydrocarbon synthesis by bromoperoxidaseCrossRef | 1:CAS:528:DyaE1MXot1yitg%3D%3D&md5=b6ccafa8100bdd983267aac33085d884CAS |

[113]  M. G. Scarratt, R. M. Moore, Production of methyl chloride and methyl bromide in laboratory cultures of marine phytoplankton Mar. Chem. 1996, 54, 263.
Production of methyl chloride and methyl bromide in laboratory cultures of marine phytoplanktonCrossRef | 1:CAS:528:DyaK28Xmt1alt7w%3D&md5=e7a6380ed5f4930837c4dd77afdc9274CAS |

[114]  W. T. Sturges, G. F. Cota, P. T. Buckley, Bromoform emission from Arctic ice algae Nature 1992, 358, 660.
Bromoform emission from Arctic ice algaeCrossRef | 1:CAS:528:DyaK38Xls1Ogsrg%3D&md5=093c954762434ac008e75f7c392c93bdCAS |

[115]  O. C. Zafiriou, Reaction of methyl halides with seawater and marine aerosols J. Mar. Res. 1975, 33, 75.
| 1:CAS:528:DyaE28XlvVahsLo%3D&md5=d95a8b9bf272bf788ebd799ad1cb69d4CAS |

[116]  R. H. White, Analysis of dimethyl sulfonium compounds in marine algae J. Mar. Res. 1982, 40, 529.
| 1:CAS:528:DyaL38Xlt1els7g%3D&md5=2fea4feca7836a06ef33be576bb0556aCAS |

[117]  Z. Hu, R. M. Moore, Kinetics of methyl halide production by reaction of DMSP with halide ion Mar. Chem. 1996, 52, 147.
Kinetics of methyl halide production by reaction of DMSP with halide ionCrossRef | 1:CAS:528:DyaK28XisFWrs7o%3D&md5=91619af20d9a8c74e2554335962d60eeCAS |

[118]  R. M. Moore, M. Webb, R. Tocarkzyk, R. Wever, Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures J. Geophys. Res. 1996, 101, 20899.
Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom culturesCrossRef | 1:CAS:528:DyaK28Xmtlyqu7w%3D&md5=13efac4db09f3088567b6e71865cc1a6CAS |

[119]  C. Hughes, M. Johnson, R. Utting, S. Turner, G. Malin, A. Clarke, P. S. Liss, Microbial control of bromocarbon concentrations in coastal waters of the western Antarctic Peninsula Mar. Chem. 2013, 151, 35.
Microbial control of bromocarbon concentrations in coastal waters of the western Antarctic PeninsulaCrossRef | 1:CAS:528:DC%2BC3sXltVersLg%3D&md5=7891cd9c3a192b8cb9430ecc66177586CAS |

[120]  T. H. Class, K. Ballschmiter, Chemistry of organic traces in air: sources and distribution of bromo- and bromochloromethanes in marine air and surface water of the Atlantic Ocean J. Atmos. Chem. 1988, 6, 35.
Chemistry of organic traces in air: sources and distribution of bromo- and bromochloromethanes in marine air and surface water of the Atlantic OceanCrossRef | 1:CAS:528:DyaL1cXhtFyntr8%3D&md5=e7c41f6b7a1e11768cb1ec195908b402CAS |

[121]  Y.-K. Lim, S.-M. Phang, N. Abdul Rahman, W. T. Sturges, G. Malin, Halocarbon emissions from marine phytoplankton and climate change Int. J. Environ. Sci. Technol. 2017, 14, 1355.
Halocarbon emissions from marine phytoplankton and climate changeCrossRef | 1:CAS:528:DC%2BC2sXhtVequro%3D&md5=eb78c6c45acc25cfcddbf8f046677caeCAS |

[122]  C. Hughes, S. Sun, Light and brominating activity in two species of marine diatom Mar. Chem. 2016, 181, 1.
Light and brominating activity in two species of marine diatomCrossRef | 1:CAS:528:DC%2BC28XksVyksLo%3D&md5=5171e532b519c7359e5ba33a9da184caCAS |

[123]  S. Collins, B. Rost, T. A. Rynearson, Evolutionary potential of marine phytoplankton under ocean acidification Evol. Appl. 2014, 7, 140.
Evolutionary potential of marine phytoplankton under ocean acidificationCrossRef | 1:CAS:528:DC%2BC2cXnt1Wltg%3D%3D&md5=ba8daa0099e9dbb0b39f6c7837cdb6e7CAS |

[124]  J. Stefels, M. A. van Leeuwe, Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). I. Intracellular DMSP concentrations J. Phycol. 1998, 34, 486.
Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). I. Intracellular DMSP concentrationsCrossRef | 1:CAS:528:DyaK1cXkvVOksLg%3D&md5=2f589f1d60ca16b26eea78c352efb52aCAS |

[125]  J. A. Raven, R. J. Geider, Adaptation, acclimation and regulation in algal photosynthesis, in Photosynthesis in Algae (Eds A. W.D. Larkum, S. E. Douglas, J. A. Raven) 2003, pp. 385–412 (Springer Science +Business Media: Dordrecht).

[126]  N. Leonardos, Physiological steady state of phytoplankton in the field? An example based on pigment profile of Emiliania huxleyi (Haptophyta) during a light shift Limnol. Oceanogr. 2008, 53, 306.
Physiological steady state of phytoplankton in the field? An example based on pigment profile of Emiliania huxleyi (Haptophyta) during a light shiftCrossRef | 1:CAS:528:DC%2BD1cXhvVGjsLs%3D&md5=011849286f39ec1e191a52df9845b2acCAS |

[127]  P. A. Lee, J. R. Rudisill, A. R. Neeley, J. M. Maucher, D. A. Hutchins, Y. Feng, C. E. Hare, K. Leblanc, J. M. Rose, S. W. Wilhelm, J. M. Rowe, G. R. DiTullio, Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate Mar. Ecol. Prog. Ser. 2009, 388, 41.
Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. DimethylsulfoniopropionateCrossRef | 1:CAS:528:DC%2BD1MXht1SrtrjI&md5=dd44275807776f6bc456e431f2af06a0CAS |

[128]  N. Gypens, A. V. Borges, Increase in dimethylsulfide (DMS) emissions due to eutrophication of coastal waters offsets their reduction due to ocean acidification Front. Mar. Sci. 2014, 00004.



Rent Article (via Deepdyve) Export Citation

View Altmetrics