Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
RESEARCH ARTICLE (Open Access)

Phylogenetics of the skyhoppers (Kosciuscola) of the Australian Alps: evolutionary and conservation implications

Kate D. L. Umbers https://orcid.org/0000-0002-9375-4527 A B J , Rachel A. Slatyer C , Nikolai J. Tatarnic D E , Giselle R. Muschett F G , Shichen Wang H and Hojun Song I
+ Author Affiliations
- Author Affiliations

A School of Science, Western Sydney University, Penrith, NSW 2751, Australia.

B Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.

C Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.

D Collections and Research, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia.

E Centre for Evolutionary Biology, University of Western Australia, Crawley, WA 6009, Australia.

F Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.

G Vicerrectoría de Investigación, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.

H Texas A&M AgriLife Research: Genomics and Bioinformatics Service, College Station, TX, USA.

I Department of Entomology, Texas A&M University, College Station, TX, USA.

J Corresponding author. Email: k.umbers@westernsydney.edu.au

Pacific Conservation Biology 28(3) 261-276 https://doi.org/10.1071/PC21015
Submitted: 12 March 2021  Accepted: 22 June 2021   Published: 15 July 2021

Journal Compilation © CSIRO 2022 Open Access CC BY-NC-ND

Abstract

The true biodiversity of Australia’s alpine and subalpine endemics is unknown. Genetic studies to date have focused on sub-regions and restricted taxa, but even so, indicate deep divergences across small geographic scales and therefore that the bulk of biodiversity remains to be discovered. We aimed to study the phylogeography of the Australian Alps by focusing on the skyhoppers (Kosciuscola), a genus of five species of flightless grasshoppers whose combined distributions both span the region and are almost exclusively contained within it. Our sampling covered 650 km on the mainland and several sites in Tasmania with total of 260 specimens used to reconstruct a robust phylogeny of Koscisucola. Phylogenies were based on single nucleotide polymorphism data generated from double-digested restriction-associated DNA sequencing. Skyhoppers diverged around 2 million years ago and have since undergone complex diversification seemingly driven by climatic oscillations throughout the Pleistocene. We recovered not 5 but 14 clades indicating the presence of many unknown species. Our results support conspicuous geographic features as genetic breaks; e.g. the Murray Valley, and inconspicuous ones; e.g. between the Bogong High Plains and Mt Hotham. Climate change is progressing quickly in the region and its impact, particularly on snow, could have severe consequences for the skyhoppers’ overwinter survival. The true diversity of skyhoppers highlights that biodiversity loss in the Alps as a result of climate change is likely to be far greater than what can be estimated based on current species numbers and that management including small geographical scales is key.

Keywords: alpine, climate change, conservation, flightless grasshoppers, insect decline, Kosciuscola, mountain, skyhoppers.


References

Annandale, B., and Kirkpatrick, J. B. (2017). Diurnal to decadal changes in the balance between vegetation and bare ground in Tasmanian fjaeldmark. Arctic, Antarctic, and Alpine Research 49, 473–486.
Diurnal to decadal changes in the balance between vegetation and bare ground in Tasmanian fjaeldmark.Crossref | GoogleScholarGoogle Scholar |

Atkins, Z. S., Amor, M. D., Clemann, N., Chapple, D. G., While, G. M., Gardner, M. G., Haines, M. L., Harrisson, K. A., Schroder, M., and Robert, K. A. (2020). Allopatric divergence drives the genetic structuring of an endangered alpine endemic lizard with a sky-island distribution. Animal Conservation 23, 104–118.
Allopatric divergence drives the genetic structuring of an endangered alpine endemic lizard with a sky-island distribution.Crossref | GoogleScholarGoogle Scholar |

Baker, C. H., Graham, G. C., Scott, K. D., Cameron, S. L., Yeates, D. K., and Merritt, D. J. (2008). Distribution and phylogenetic relationships of Australian glow-worms Arachnocampa (Diptera, Keroplatidae). Molecular Phylogenetics and Evolution 48, 506–514.
Distribution and phylogenetic relationships of Australian glow-worms Arachnocampa (Diptera, Keroplatidae).Crossref | GoogleScholarGoogle Scholar | 18583158PubMed |

Bell, N., Griffin, P. C., Hoffmann, A. A., and Miller, A. D. (2018). Spatial patterns of genetic diversity among Australian alpine flora communities revealed by comparative phylogenomics. Journal of Biogeography 45, 177–189.
Spatial patterns of genetic diversity among Australian alpine flora communities revealed by comparative phylogenomics.Crossref | GoogleScholarGoogle Scholar |

Bensasson, D., Petrov, D. A., Zhang, D.-X., Hartl, D. L., and Hewitt, G. M. (2001). Genomic gigantism: DNA loss is slow in mountain grasshoppers. Molecular Biology and Evolution 18, 246–253.
Genomic gigantism: DNA loss is slow in mountain grasshoppers.Crossref | GoogleScholarGoogle Scholar | 11158383PubMed |

Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., Maio, N. D., Matschiner, M., Mendes, F. K., Müller, N. F., Ogilvie, H. A., Plessis, L., du, Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M. A., Wu, C.-H., Xie, D., Zhang, C., Stadler, T., and Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15, e1006650.
BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar | 30958812PubMed |

Brannelly, L. A., Hunter, D. A., Lenger, D., Scheele, B. C., Skerratt, L. F., and Berger, L. (2015). Dynamics of chytridiomycosis during the breeding season in an Australian alpine amphibian. PLoS ONE 10, e0143629.
Dynamics of chytridiomycosis during the breeding season in an Australian alpine amphibian.Crossref | GoogleScholarGoogle Scholar | 26629993PubMed |

Camac, J. S., Umbers, K. D. L., Morgan, J. W., Geange, S. R., Hanea, A., Slatyer, R. A., McDougall, K. L., Venn, S. E., Vesk, P. A., Hoffmann, A. A., and Nicotra, A. B. (2020). Predicting species and community responses to global change in Australian mountain ecosystems using structured expert judgement. bioRxiv , .
Predicting species and community responses to global change in Australian mountain ecosystems using structured expert judgement.Crossref | GoogleScholarGoogle Scholar |

Campbell, N. A., and Dearn, J. M. (1980). Altitudinal variation in and morphological divergence between three related species of grasshopper Praxibulus sp., Kosciuscola cognatus and Kosciuscola usitatus (Orthoptera: Acrididae). Australian Journal of Zoology 28, 103–118.
Altitudinal variation in and morphological divergence between three related species of grasshopper Praxibulus sp., Kosciuscola cognatus and Kosciuscola usitatus (Orthoptera: Acrididae).Crossref | GoogleScholarGoogle Scholar |

Chifman, J., and Kubatko, L. (2014). Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317–3324.
Quartet inference from SNP data under the coalescent model.Crossref | GoogleScholarGoogle Scholar | 25104814PubMed |

Driscoll, D. A., Worboys, G. L., Allan, H., Banks, S. C., Beeton, N. J., Cherubin, R. C., Doherty, T. S., Finlayson, C. M., Green, K., Hartley, R., Hope, G., Johnson, C. N., Lintermans, M., Mackey, B., Paull, D. J., Pittock, J., Porfirio, L. L., Ritchie, E. G., Sato, C. F., Scheele, B. C., Slattery, D. A., Venn, S., Watson, D., Watson, M., and Williams, R. M. (2019). Impacts of feral horses in the Australian Alps and evidence-based solutions. Ecological Management & Restoration 20, 63–72.
Impacts of feral horses in the Australian Alps and evidence-based solutions.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Dunn, K. L. (2019). Oreixenica latialis (Lepidoptera: Nymphalidae: Satyrinae) on Mount Buffalo, Victoria: field notes on its local distribution and adult behaviour to assist future conservation work. Calodema 724, 1–24.

Eaton, D. A. R. (2014). PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30, 1844–1849.
PyRAD: assembly of de novo RADseq loci for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar | 15034147PubMed |

Elith, J., Kearney, M., and Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution 1, 330–342.
The art of modelling range-shifting species.Crossref | GoogleScholarGoogle Scholar |

Endo, Y., Nash, M., Hoffmann, A. A., Slatyer, R., and Miller, A. D. (2015). Comparative phylogeography of alpine invertebrates indicates deep lineage diversification and historical refugia in the Australian Alps. Journal of Biogeography 42, 89–102.
Comparative phylogeography of alpine invertebrates indicates deep lineage diversification and historical refugia in the Australian Alps.Crossref | GoogleScholarGoogle Scholar |

Filshie, B. K., Day, M. F., and Mercer, E. H. (1975). Colour and colour change in the grasshopper, Kosciuscola tristis. Journal of Insect Physiology 21, 1763–1770.
Colour and colour change in the grasshopper, Kosciuscola tristis.Crossref | GoogleScholarGoogle Scholar |

Furse, J. M., and Coughran, J. (2011). An assessment of the distribution, biology, threatening processes and conservation status of the freshwater crayfish, genus Euastacus (Decapoda, Parastacidae), in continental Australia. I. Biological background and current status. New Frontiers in Crustacean Biology , 241–252.
An assessment of the distribution, biology, threatening processes and conservation status of the freshwater crayfish, genus Euastacus (Decapoda, Parastacidae), in continental Australia. I. Biological background and current status.Crossref | GoogleScholarGoogle Scholar |

Gallagher, S. J., Greenwood, D. R., Taylor, D., Smith, A. J., Wallace, M. W., and Holdgate, G. R. (2003). The Pliocene climatic and environmental evolution of southeastern Australia: evidence from the marine and terrestrial realm. Palaeogeography, Palaeoclimatology, Palaeoecology 193, 349–382.
The Pliocene climatic and environmental evolution of southeastern Australia: evidence from the marine and terrestrial realm.Crossref | GoogleScholarGoogle Scholar |

Geiser, F., and Broome, L. S. (1991). Hibernation in the mountain pygmy possum Burramys parvus (Marsupialia). Journal of Zoology 223, 593–602.
Hibernation in the mountain pygmy possum Burramys parvus (Marsupialia).Crossref | GoogleScholarGoogle Scholar |

Goodwin, E. K., Rader, R., Encinas-Viso, F., and Saunders, M. E. (2021). Weather conditions affect the visitation frequency, richness and detectability of insect flower visitors in the Australian alpine zone. Environmental Entomology 50, 348–358.
Weather conditions affect the visitation frequency, richness and detectability of insect flower visitors in the Australian alpine zone.Crossref | GoogleScholarGoogle Scholar | 33479744PubMed |

Green, K., and Osborne, M. J. (1994). ‘Wildlife of the Australian snow-country’. (Reed Books: Chatswood.)

Green, K., and Slatyer, R. (2019). Arthropod community composition along snowmelt gradients in snowbeds in the Snowy Mountains of south-eastern Australia. Austral Ecology 45, 144–157.
Arthropod community composition along snowmelt gradients in snowbeds in the Snowy Mountains of south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Green, K., Caley, P., Baker, M., Dreyer, D., Wallace, J., and Warrant, E. (2020). Australian Bogong moths Agrotis infusa (Lepidoptera: Noctuidae), 1951–2020: decline and crash. Austral Entomology 60, 66–81.
Australian Bogong moths Agrotis infusa (Lepidoptera: Noctuidae), 1951–2020: decline and crash.Crossref | GoogleScholarGoogle Scholar | 33777401PubMed |

Griffin, P. C., and Hoffmann, A. A. (2014). Limited genetic divergence among Australian alpine Poa tussock grasses coupled with regional structuring points to ongoing gene flow and taxonomic challenges. Annals of Botany 113, 953–965.
Limited genetic divergence among Australian alpine Poa tussock grasses coupled with regional structuring points to ongoing gene flow and taxonomic challenges.Crossref | GoogleScholarGoogle Scholar | 24607721PubMed |

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis‐Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., Regan, T. J., Brotons, L., McDonald‐Madden, E., Mantyka‐Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M. R., Possingham, H. P., and Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters 16, 1424–1435.
Predicting species distributions for conservation decisions.Crossref | GoogleScholarGoogle Scholar | 24134332PubMed |

Haines, M. L., Stuart-Fox, D., Sumner, J., Clemann, N., Chapple, D. G., and Melville, J. (2017). A complex history of introgression and vicariance in a threatened montane skink (Pseudemoia cryodroma) across an Australian sky island system. Conservation Genetics 18, 939–950.
A complex history of introgression and vicariance in a threatened montane skink (Pseudemoia cryodroma) across an Australian sky island system.Crossref | GoogleScholarGoogle Scholar |

Hatley, J., and Murphy, N. P. (2016). Trouble at the top? Restricted distribution and extreme population isolation in an alpine crustacean assemblage with unexpected lineage diversity. Freshwater Biology 61, 1891–1904.
Trouble at the top? Restricted distribution and extreme population isolation in an alpine crustacean assemblage with unexpected lineage diversity.Crossref | GoogleScholarGoogle Scholar |

Hennessy, K., Fitzharris, B., Bates, B. C., Harvey, N., Howden, S. M., Hughes, L., Salinger, J., and Warrick, R. (2007). Australia and New Zealand. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK.

Hoffmann, A. A., Rymer, P. D., Byrne, M., Ruthrof, K. X., Whinam, J., McGeoch, M., Bergstrom, D. M., Guerin, G. R., Sparrow, B., Joseph, L., Hill, S. J., Andrew, N. R., Camac, J., Bell, N., Riegler, M., Gardner, J. L., and Williams, S. E. (2019). Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples. Austral Ecology 44, 3–27.
Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples.Crossref | GoogleScholarGoogle Scholar |

Holdgate, G. R., Wallace, M. W., Gallagher, S. J., Wagstaff, B. E., and Moore, D. (2008). No mountains to snow on: major post-Eocene uplift of the East Victoria Highlands; evidence from Cenozoic deposits. Australian Journal of Earth Sciences 55, 211–234.
No mountains to snow on: major post-Eocene uplift of the East Victoria Highlands; evidence from Cenozoic deposits.Crossref | GoogleScholarGoogle Scholar |

Hughes, L. (2003). Climate change and Australia: Trends, projections and impacts. Austral Ecology 28, 423–443.
Climate change and Australia: Trends, projections and impacts.Crossref | GoogleScholarGoogle Scholar |

Hughes, L. (2011). Climate change and Australia: key vulnerable regions. Regional Environmental Change 11, 189–195.
Climate change and Australia: key vulnerable regions.Crossref | GoogleScholarGoogle Scholar |

Hunter, D., Marantelli, G., McFadden, M., Harlow, P., Scheele, B., and Pietsch, R. (2010). Assessment of re-introduction methods for the Southern Corroboree Frog in the Snowy Mountains region of Australia. In ‘Global Reintroduction perspectives 2010’. (Ed P. S. Soorae.) pp. 72–76. (IUCN Re-introduction Specialist Group: Abu Dhabi, UAE.)

Karpala, T. (2020). How are Australian alpine ecosystems responding to climate change? Measuring shrubs as bioindicators of change, Victorian Alps, Australia. PhD Thesis, Deakin University Melbourne. Available at http://dro.deakin.edu.au/view/DU:30139127 [Accessed 1 February 2021]

Key, K. H. L., and Day, M. F. (1954a). A temperature-controlled physiological colour response in the grasshopper, Kosciuscola tristis Sjöst. (Orthoptera: Acrididae). Australian Journal of Zoology 2, 309–339.
A temperature-controlled physiological colour response in the grasshopper, Kosciuscola tristis Sjöst. (Orthoptera: Acrididae).Crossref | GoogleScholarGoogle Scholar |

Key, K. H. L., and Day, M. F. (1954b). The physiological mechanism of colour change in the grasshopper, Kosciuscola tristis Sjöst. (Orthoptera: Acrididae). Australian Journal of Zoology 2, 340–363.
The physiological mechanism of colour change in the grasshopper, Kosciuscola tristis Sjöst. (Orthoptera: Acrididae).Crossref | GoogleScholarGoogle Scholar |

Key, K. L. (1989). Revision of the genus Praxibulus (Orthoptera: Acrididae). Invertebrate Systematics 3, 1–121.
Revision of the genus Praxibulus (Orthoptera: Acrididae).Crossref | GoogleScholarGoogle Scholar |

Kirkpatrick, J. B., Deane, A., and Parry, J. (2019). The dynamics of rush circles in subalpine grassland. Australian Journal of Botany 67, 335–340.
The dynamics of rush circles in subalpine grassland.Crossref | GoogleScholarGoogle Scholar |

Knowles, L. L. (2000). Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of Western North America. Evolution 54, 1337–1348.
Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of Western North America.Crossref | GoogleScholarGoogle Scholar | 11005300PubMed |

Knowles, L. L. (2001). Genealogical portraits of speciation in montane grasshoppers (genus Melanoplus) from the sky islands of the Rocky Mountains. Proceedings of the Royal Society of London. Series B: Biological Sciences 268, 319–324.
Genealogical portraits of speciation in montane grasshoppers (genus Melanoplus) from the sky islands of the Rocky Mountains.Crossref | GoogleScholarGoogle Scholar | 11217904PubMed |

Kreger, K. M., Shaban, B., Wapstra, E., and Burridge, C. P. (2020). Phylogeographic parallelism: Concordant patterns in closely related species illuminate underlying mechanisms in the historically glaciated Tasmanian landscape. Journal of Biogeography 47, 1674–1686.
Phylogeographic parallelism: Concordant patterns in closely related species illuminate underlying mechanisms in the historically glaciated Tasmanian landscape.Crossref | GoogleScholarGoogle Scholar |

Lambeck, K., and Chappell, J. (2001). Sea level change through the last glacial cycle. Science 292, 679–686.
Sea level change through the last glacial cycle.Crossref | GoogleScholarGoogle Scholar | 11326090PubMed |

Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T., and Calcott, B. (2017). PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34, 772–773.
PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 28013191PubMed |

Leaché, A. D., Banbury, B. L., Felsenstein, J., de Oca, A., nieto-Montes, , and Stamatakis, A. (2015). Short Tree, Long Tree, Right Tree, Wrong Tree: New acquisition bias corrections for inferring SNP phylogenies. Systematic Biology 64, 1032–1047.
Short Tree, Long Tree, Right Tree, Wrong Tree: New acquisition bias corrections for inferring SNP phylogenies.Crossref | GoogleScholarGoogle Scholar | 26227865PubMed |

McCoull, C. J. (2000). Geographic variation and adaptation in the Tasmanian metallic skink (Niveoscincus metallicus). Phd, University of Tasmania. Available at https://eprints.utas.edu.au/20485/ [Accessed 24 February 2021]

Milla, L., and Encinas-Viso, F. (2020). Plant-pollinator communities in the Australian Alps. Australasian Plant Conservation: Journal of the Australian Network for Plant Conservation 28, 13–16.

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2012). The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In ‘Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond’. XSEDE ’12. pp. 1–8. (Association for Computing Machinery: New York, NY, USA.)
| Crossref |

Mitrovski, P., Heinze, D. A., Broome, L., Hoffmann, A. A., and Weeks, A. R. (2007). High levels of variation despite genetic fragmentation in populations of the endangered mountain pygmy-possum, Burramys parvus, in alpine Australia. Molecular Ecology 16, 75–87.
High levels of variation despite genetic fragmentation in populations of the endangered mountain pygmy-possum, Burramys parvus, in alpine Australia.Crossref | GoogleScholarGoogle Scholar | 17181722PubMed |

Muschett, G. (2016). Evolution of aggressive behaviour in the Australian alpine grasshopper genus Kosciuscola. PhD Thesis, Macquarie University Sydney. Available at https://trove.nla.gov.au/version/249036968 [Accessed 31 May 2020]

Muschett, G., Umbers, K. D. L., and Herberstein, M. E. (2017). Within-season variability of fighting behaviour in an Australian alpine grasshopper. PLoS ONE 12, e0171697.
Within-season variability of fighting behaviour in an Australian alpine grasshopper.Crossref | GoogleScholarGoogle Scholar | 28403243PubMed |

Mynott, J. H. (2015). Mitochondrial DNA allows the association of life stages to facilitate species recognition and delimitation in Australian stoneflies (Plecoptera: Gripopterygidae: Newmanoperla). Invertebrate Systematics 29, 223–238.
Mitochondrial DNA allows the association of life stages to facilitate species recognition and delimitation in Australian stoneflies (Plecoptera: Gripopterygidae: Newmanoperla).Crossref | GoogleScholarGoogle Scholar |

icotra, A. B., Beever, E. A., Robertson, A. L., Hofmann, G. E., and O’Leary, J. (2015). Assessing the components of adaptive capacity to improve conservation and management efforts under global change. Conservation Biology 29, 1268–1278.
Assessing the components of adaptive capacity to improve conservation and management efforts under global change.Crossref | GoogleScholarGoogle Scholar |

Parida, M., Hoffmann, A. A., and Hill, M. P. (2015). Climate change expected to drive habitat loss for two key herbivore species in an alpine environment. Journal of Biogeography 42, 1210–1221.
Climate change expected to drive habitat loss for two key herbivore species in an alpine environment.Crossref | GoogleScholarGoogle Scholar |

Pepper, M., Sumner, J., Brennan, I. G., Hodges, K., Lemmon, A. R., Lemmon, E. M., Peterson, G., Rabosky, D. L., Schwarzkopf, L., Scott, I. A. W., Shea, G., and Keogh, J. S. (2018). Speciation in the mountains and dispersal by rivers: Molecular phylogeny of Eulamprus water skinks and the biogeography of Eastern Australia. Journal of Biogeography 45, 2040–2052.
Speciation in the mountains and dispersal by rivers: Molecular phylogeny of Eulamprus water skinks and the biogeography of Eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Rambaut, A., and Drummond, A. J. (2003). Tracer: MCMC trace analysis tool (Version 1.7.1). Available at http://tree.bio.ed.ac.uk/software/tracer/ [Accessed 16 June 2021]

Redding, D. W., and Mooers, A. Ø. (2006). Incorporating evolutionary measures into conservation prioritization. Conservation Biology 20, 1670–1678.
Incorporating evolutionary measures into conservation prioritization.Crossref | GoogleScholarGoogle Scholar | 17181802PubMed |

Rehn, J. A. G. (1957). ‘The grasshoppers and locusts (Acridoidea) of Australia. Family Acrididae: Subfamily Cyrtacanthacrldinae tribes Oxyini. Spathosternini. and Praxibulini’. (CSIRO: Melbourne.)

Rutter, N. J., Mynott, J. H., Howell, T. J., Stukas, A. A., Pascoe, J. H., Bennett, P. C., and Murphy, N. P. (2021). Buzzing with possibilities: Training and olfactory generalization in conservation detection dogs for an endangered stonefly species. Aquatic Conservation: Marine and Freshwater Ecosystems 31, 984–989.
Buzzing with possibilities: Training and olfactory generalization in conservation detection dogs for an endangered stonefly species.Crossref | GoogleScholarGoogle Scholar |

Sjöstedt, Y. (1934). Neue australische Acrididen. Arkiv för Zoology 26 A, 1–9.

Slatyer, R. A., Nash, M. A., Miller, A. D., Endo, Y., Umbers, K. D. L., and Hoffmann, A. A. (2014). Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis. BMC Evolutionary Biology 14, 204.
Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis.Crossref | GoogleScholarGoogle Scholar | 25273226PubMed |

Slatyer, R. A., Nash, M. A., and Hoffmann, A. A. (2016). Scale-dependent thermal tolerance variation in Australian mountain grasshoppers. Ecography 39, 572–582.
Scale-dependent thermal tolerance variation in Australian mountain grasshoppers.Crossref | GoogleScholarGoogle Scholar |

Song, H., Mariño-Pérez, R., Woller, D. A., and Cigliano, M. M. (2018). Evolution, Diversification, and Biogeography of Grasshoppers (Orthoptera: Acrididae). Insect Systematics and Diversity 2, 1–25.
Evolution, Diversification, and Biogeography of Grasshoppers (Orthoptera: Acrididae).Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML web servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |

Tatarnic, N. J., Umbers, K. D. L., and Song, H. (2013). Molecular phylogeny of the Kosciuscola grasshoppers endemic to the Australian alpine and montane regions. Invertebrate Systematics 27, 307–316.
Molecular phylogeny of the Kosciuscola grasshoppers endemic to the Australian alpine and montane regions.Crossref | GoogleScholarGoogle Scholar |

Umbers, K. D. L. (2011). Turn the temperature to turquoise: cues for colour change in the male chameleon grasshopper (Kosciuscola tristis) (Orthoptera: Acrididae). Journal of Insect Physiology 57, 1198–1204.
Turn the temperature to turquoise: cues for colour change in the male chameleon grasshopper (Kosciuscola tristis) (Orthoptera: Acrididae).Crossref | GoogleScholarGoogle Scholar |

Umbers, K. D. L., Tatarnic, N. J., and Herberstein, M. E. (2012). Ferocious fighting between male grasshoppers. PLoS ONE 7, e49600.
Ferocious fighting between male grasshoppers.Crossref | GoogleScholarGoogle Scholar |

Umbers, K. D. L., Herberstein, M. E., and Madin, J. S. (2013). Colour in insect thermoregulation: empirical and theoretical tests in the colour-changing grasshopper, Kosciuscola tristis. Journal of Insect Physiology 59, 81–90.
Colour in insect thermoregulation: empirical and theoretical tests in the colour-changing grasshopper, Kosciuscola tristis.Crossref | GoogleScholarGoogle Scholar |

Umbers, K. D. L., Riley, J. L., Kelly, M. B. J., Taylor‐Dalton, G., Lawrence, J. P., and Byrne, P. G. (2020). Educating the enemy: Harnessing learned avoidance behavior in wild predators to increase survival of reintroduced southern corroboree frogs. Conservation Science and Practice 2, e139.
Educating the enemy: Harnessing learned avoidance behavior in wild predators to increase survival of reintroduced southern corroboree frogs.Crossref | GoogleScholarGoogle Scholar |

Vaidya, G., Lohman, D. J., and Meier, R. (2011). SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180.
SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information.Crossref | GoogleScholarGoogle Scholar |

Williams, R. J., Wahren, C.-H., Stott, K. A. J., Camac, J. S., White, M., Burns, E., Harris, S., Nash, M., Morgan, J. W., Venn, S., Papst, W. A., and Hoffmann, A. A. (2015). An International Union for the Conservation of Nature Red List ecosystems risk assessment for alpine snow patch herbfields, South-Eastern Australia. Austral Ecology 40, 433–443.
An International Union for the Conservation of Nature Red List ecosystems risk assessment for alpine snow patch herbfields, South-Eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Wintle, B. A., Legge, S., and Woinarski, J. C. Z. (2020). After the megafires: What next for Australian wildlife? Trends in Ecology & Evolution 35, 753–757.
After the megafires: What next for Australian wildlife?Crossref | GoogleScholarGoogle Scholar |

Yadav, S., Stow, A., and Dudaniec, R. Y. (2020). Microgeographic adaptation corresponds with elevational distributions of congeneric montane grasshoppers. Molecular Ecology 30, 481–498.
Microgeographic adaptation corresponds with elevational distributions of congeneric montane grasshoppers.Crossref | GoogleScholarGoogle Scholar | 33217095PubMed |