Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Glycocalyx characterisation and glycoprotein expression of Sus domesticus epididymal sperm surface samples

Anna Fàbrega A C , Marta Puigmulé A , Jean-Louis Dacheux B , Sergi Bonet A and Elisabeth Pinart A
+ Author Affiliations
- Author Affiliations

A Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, s/n, 17071 Girona, Spain.

B Gametes Males et Fertilité, Physiologie de la reproduction et des comportements, UMR 6175 INRA-CNRS-Université de Tours, 37380 Nouzilly, France.

C Corresponding author. Email: anna.fabrega@udg.edu

Reproduction, Fertility and Development 24(4) 619-630 https://doi.org/10.1071/RD11064
Submitted: 10 March 2011  Accepted: 27 September 2011   Published: 25 November 2011

Abstract

The sperm surface is covered with a dense coating of carbohydrate-rich molecules. Many of these molecules are involved in the acquisition of fertilising ability. In the present study, eight lectins (i.e. Arachis hypogae (peanut) agglutinin (PNA), Lens culimaris (lentil) agglutinin-A (LCA), Pisum sativum (pea) agglutin (PSA), Triticum vulgari (wheat) germ agglutinin (WGA), Helix pomatia agglutinin (HPA), Phaseolus vulgaris (red kidney bean) leucoagglutinin (PHA-L), Glycine max (soybean) agglutinin (SBA) and Ulex europaeus agglutinin I (UEA-I)) were investigated to identify changes in the nature and localisation of glycoproteins in boar spermatozoa migrating along the epididymal duct. Complementary procedures included measurement of global lectin binding over the surface of the viable sperm population by flow cytometry, analysis of lectin localisation on the membrane of individual spermatozoa using fluorescence microscopy and the electrophoretic characterisation of the major sperm surface glycoprotein receptors involved in lectin binding. A significant increase was found in sperm galactose, glucose/mannose and N-acetyl-d-glucosamine residues distally in the epididymis. Moreover, the sperm head, cytoplasmic droplet and midpiece were recognised by most of the lectins tested, whereas only HPA and WGA bound to the principal piece and end piece of the sperm tail. Fourteen sperm surface proteins were observed with different patterns of lectin expression between epididymal regions. The sperm glycocalyx modifications observed in the present study provide an insight into the molecular modifications associated with epididymal maturation, which may be correlated with the degree of maturation of ejaculated spermatozoa.

Additional keywords: boar, epididymis, flow cytometry, immunocytochemistry.


References

Arya, M., and Vanha-Perttula, T. (1985). Lectin-binding pattern of bull testis and epididymis. J. Androl. 6, 230–242.
| 1:STN:280:DyaL2M3ovVGrtQ%3D%3D&md5=ffb4a42327655b857379b4e69510f22eCAS | 2411705PubMed |

Ashworth, P. J., Harrison, R. A., Miller, N. G., Plummer, J. M., and Watson, P. F. (1995). Flow cytometric detection of bicarbonate-induced changes in lectin binding in boar and ram sperm populations. Mol. Reprod. Dev. 40, 164–176.
Flow cytometric detection of bicarbonate-induced changes in lectin binding in boar and ram sperm populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXktFajs78%3D&md5=f48bd47129b4dd6338ed33a984e5ebf3CAS | 7766409PubMed |

Baker, S. S., Thomas, M., and Thaler, C. D. (2004). Sperm membrane dynamics assessed by changes in lectin fluorescence before and after capacitation. J. Androl. 25, 744–751.
| 15292105PubMed |

Belleannée, C., Belghazi, M., Labas, V., Teixeira-Gomes, A.-P., Gatti, J. L., Dacheux, J.-L., and Dacheux, F. (2011). Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics 11, 1952–1964.
Purification and identification of sperm surface proteins and changes during epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 21472858PubMed |

Blobel, C. P. (2000). Functional processing of fertilin: evidence for a critical role of proteolysis in sperm maturation and activation. Rev. Reprod. 5, 75–83.
Functional processing of fertilin: evidence for a critical role of proteolysis in sperm maturation and activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsleiu78%3D&md5=add6acebfb8a959f6f8dd84ea86c10b0CAS | 10864851PubMed |

Calvo, A., Pastor, L. M., Horn, R., and Pallares, J. (1995). Histochemical study of glycoconjugates in the epididymis of the hamster (Mesocricetus auratus). Histochem. J. 27, 670–680.
| 1:CAS:528:DyaK28Xjt12qug%3D%3D&md5=c0805c6ad079c82f75e19a49c40dc29dCAS | 8557530PubMed |

Calvo, A., Pastor, L. M., Bonet, S., Pinart, E., and Ventura, M. (2000). Characterization of the glycoconjugates of boar testis and epididymis. J. Reprod. Fertil. 120, 325–335.
| 1:CAS:528:DC%2BD3cXovVajurc%3D&md5=1620048a3901b394641bdfab94eb8be9CAS | 11058448PubMed |

Cooper, N. J., McClean, R. V., Leigh, C. M., and Breed, W. G. (2001). Glycoconjugates on the surface of epididymal spermatozoa in a marsupial, the brushtail possum, Trichosurus vulpecula. Reproduction 122, 165–176.
Glycoconjugates on the surface of epididymal spermatozoa in a marsupial, the brushtail possum, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsVGis7k%3D&md5=c52cc716c3a2e1c2fab6ded12677bca9CAS | 11425341PubMed |

Dacheux, J. L., Dacheux, F., and Paquignon, M. (1989). Changes in sperm surface membrane and luminal protein fluid content during epididymal transit in the boar. Biol. Reprod. 40, 635–651.
Changes in sperm surface membrane and luminal protein fluid content during epididymal transit in the boar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktVCqtbs%3D&md5=6343021059895b25b350926549f5faacCAS | 2758093PubMed |

Dacheux, J. L., Belghazi, M., Lanson, Y., and Dacheux, F. (2006). Human epididymal secretome and proteome. Mol. Cell. Endocrinol. 250, 36–42.
Human epididymal secretome and proteome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVGjtrs%3D&md5=8b548e5d1cc230a6ebf01b347848f49bCAS | 16431015PubMed |

Diekman, A. (2003). Glycoconjugates in sperm function and gamete interactions: how much sugar does it take to sweet-talk the egg? Cell. Mol. Life Sci. 60, 298–308.
Glycoconjugates in sperm function and gamete interactions: how much sugar does it take to sweet-talk the egg?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Wks78%3D&md5=b5740a14f3d37ffd1d2fc36ad388b46aCAS | 12678495PubMed |

Dravland, E., and Joshi, M.-I. S. (1981). Sperm-coating antigens secreted by the epididymis and seminal vesicle of the rat. Biol. Reprod. 25, 649–658.
Sperm-coating antigens secreted by the epididymis and seminal vesicle of the rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVWqt78%3D&md5=90bed7aeac553e6e506d9b5eecbe189eCAS | 7306645PubMed |

Fàbrega, A., Guyonnet, B., Dacheux, J.-L., Gatti, J.-L., Puigmule, M., Bonet, S., and Pinart, E. (2011). Expression, immunolocalization and processing of fertilins ADAM-1 and ADAM-2 in the boar (Sus domesticus) spermatozoa during epididymal maturation. Reprod. Biol. Endocrinol. 9, 96.
Expression, immunolocalization and processing of fertilins ADAM-1 and ADAM-2 in the boar (Sus domesticus) spermatozoa during epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 21718510PubMed |

Fazeli, A., Hage, W. J., Cheng, F. P., Voorhout, W. F., Marks, A., Bevers, M. M., and Colenbrander, B. (1997). Acrosome-intact boar spermatozoa initiate binding to the homologous zona pellucida in vitro. Biol. Reprod. 56, 430–438.
Acrosome-intact boar spermatozoa initiate binding to the homologous zona pellucida in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXos1Wqtg%3D%3D&md5=1ff5a32424dbd6e5ae93e268169b454fCAS | 9116143PubMed |

Gatti, J.-L., Druart, X., Guerin, Y., Dacheux, F., and Dacheux, J.-L. (1999). A 105- to 94-kilodalton protein in the epididymal fluids of domestic mammals is angiotensin I-converting enzyme (ACE); evidence that sperm are the source of this ACE. Biol. Reprod. 60, 937–945.
A 105- to 94-kilodalton protein in the epididymal fluids of domestic mammals is angiotensin I-converting enzyme (ACE); evidence that sperm are the source of this ACE.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVGqtrY%3D&md5=3f654aa7a6d56e2a40be32e6dce207a0CAS | 10084969PubMed |

Harayama, H., Shibukawa, T., Miyake, M., Kannan, Y., and Kato, S. (1996). Fructose stimulates shedding of cytoplasmic droplets from epididymal boar spermatozoa. Reprod. Fertil. Dev. 8, 1039–1043.
Fructose stimulates shedding of cytoplasmic droplets from epididymal boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntFWgtrg%3D&md5=c134bf6c9cac708f0dafa1435f2bf67fCAS | 8916279PubMed |

Harayama, H., Miyake, M., and Kato, S. (1999). Immunolocalization of anti-agglutinin for spermatozoa in boars. Mol. Reprod. Dev. 52, 269–276.
Immunolocalization of anti-agglutinin for spermatozoa in boars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpsFansA%3D%3D&md5=a07ae59a7cca6bb3d089296d3fde27a3CAS | 10206658PubMed |

Jiménez, I., González-Márquez, H., Ortiz, R., Herrera, J. A., García, A., Betancourt, M., and Fierro, R. (2003). Changes in the distribution of lectin receptors during capacitation and acrosome reaction in boar spermatozoa. Theriogenology 59, 1171–1180.
Changes in the distribution of lectin receptors during capacitation and acrosome reaction in boar spermatozoa.Crossref | GoogleScholarGoogle Scholar | 12527065PubMed |

Kirchhoff, C., and Hale, G. (1996). Cell-to-cell transfer of glycosylphosphatidylinositol-anchored membrane proteins during sperm maturation. Mol. Hum. Reprod. 2, 177–184.
Cell-to-cell transfer of glycosylphosphatidylinositol-anchored membrane proteins during sperm maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XkslGrt74%3D&md5=962ff4aa1c4fe043356004d2f5a6f911CAS | 9238677PubMed |

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFags7s%3D&md5=af270e6a716a77b40e17f744b93b8b62CAS | 5432063PubMed |

Leathem, A. J., and Brooks, S. A. (1998). Light microscopy. In ‘Lectin Methods and Protocols. Vol. 9.’ (Eds J. M. Rhodes and J. D. Milton.) pp. 3–20. (Humana Press: Totowa.)

Liu, H. W., Wang, J. J., Chao, C. F., and Muller, C. (1991). Identification of two maturation-related, wheat-germ-lectin-binding proteins on the surface of mouse sperm. Acta Anat. (Basel) 142, 165–170.
Identification of two maturation-related, wheat-germ-lectin-binding proteins on the surface of mouse sperm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1GlurY%3D&md5=81eabc8a38de663e077200d67aa0fefaCAS |

López, M. L., Grez, P., Gribbel, I., and Bustos-Obregón, E. (1989). Cytochemical and ultrastructural characteristics of the stallion epididymis (Equus caballus). J. Submicrosc. Cytol. Pathol. 21, 103–120.
| 2702607PubMed |

Magargee, S. F., Kunze, E., and Hammerstedt, R. H. (1988). Changes in lectin-binding features of ram sperm surfaces associated with epididymal maturation and ejaculation. Biol. Reprod. 38, 667–685.
Changes in lectin-binding features of ram sperm surfaces associated with epididymal maturation and ejaculation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitVansLg%3D&md5=4d877fa507496a8591ec35459082f4afCAS | 3378079PubMed |

Nicolson, G. L., Usui, N., Yanagimachi, R., Yanagimachi, H., and Smith, J. R. (1977). Lectin-binding sites on the plasma membranes of rabbit spermatozoa: changes in surface receptors during epididymal maturation and after ejaculation. J. Cell Biol. 74, 950–962.
Lectin-binding sites on the plasma membranes of rabbit spermatozoa: changes in surface receptors during epididymal maturation and after ejaculation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXltlWntb4%3D&md5=125ace962b9438fa4ceeac36a7c6f3a8CAS | 903374PubMed |

Nimtz, M., Grabenhorst, E., Conradt, H. S., Sanz, L., and Calvete, J. J. (1999). Structural characterization of the oligosaccharide chains of native and crystallized boar seminal plasma spermadhesin PSP-I and PSP-II glycoforms. Eur. J. Biochem. 265, 703–718.
Structural characterization of the oligosaccharide chains of native and crystallized boar seminal plasma spermadhesin PSP-I and PSP-II glycoforms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslGltbc%3D&md5=21059a72f3fe63cb7fcc359a674890baCAS | 10504403PubMed |

Pelaez, J., and Long, J. A. (2007). Characterizing the glycocalyx of poultry spermatozoa: I. Identification and distribution of carbohydrate residues using flow cytometry and epifluorescence microscopy. J. Androl. 28, 342–352.
Characterizing the glycocalyx of poultry spermatozoa: I. Identification and distribution of carbohydrate residues using flow cytometry and epifluorescence microscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslerur0%3D&md5=d09f37259f1584313433cc64d5a82204CAS | 17108364PubMed |

Petruszak, J. A., Nehme, C. L., and Bartles, J. R. (1991). Endoproteolytic cleavage in the extracellular domain of the integral plasma membrane protein CE9 precedes its redistribution from the posterior to the anterior tail of the rat spermatozoon during epididymal maturation. J. Cell Biol. 114, 917–927.
| 1:CAS:528:DyaK3MXkvV2ru7w%3D&md5=da7e9c02d54bb0f4b23b6d2817735071CAS | 1714914PubMed |

Phelps, B. M., Koppel, D. E., Primakoff, P., and Myles, D. G. (1990). Evidence that proteolysis of the surface is an initial step in the mechanism of formation of sperm cell surface domains. J. Cell Biol. 111, 1839–1847.
| 1:CAS:528:DyaK3cXlvVyrtbY%3D&md5=4db0916a93253fe8c8e2f53947031e8fCAS | 2229175PubMed |

Pinart, E., Bonet, S., Briz, M., Pastor, L. M., Sancho, S., García, N., Badia, E., and Bassols, J. (2001). Lectin affinity of the seminiferous epithelium in healthy and cryptorchid post-pubertal boars. Int. J. Androl. 24, 153–164.
Lectin affinity of the seminiferous epithelium in healthy and cryptorchid post-pubertal boars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlyisLk%3D&md5=7326985611fd617c86342b20c5750052CAS | 11380704PubMed |

Pruneda, A., Pinart, E., Briz, M., Sancho, S., García, N., Badia, E., Kádár, E., Bassols, J., Bussalleu, E., Yeste, M., and Bonet, S. (2005). Effects of a high semen-collection frequency on the quality of sperm from ejaculates and from six epididymal regions in boars. Theriogenology 63, 2219–2232.
Effects of a high semen-collection frequency on the quality of sperm from ejaculates and from six epididymal regions in boars.Crossref | GoogleScholarGoogle Scholar | 15826685PubMed |

Schroter, S., Osterhoff, C., McArdle, W., and Ivell, R. (1999). The glycocalyx of the sperm surface. Hum. Reprod. Update 5, 302–313.
The glycocalyx of the sperm surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlvVKjtbk%3D&md5=6b3bb9b853f0a734db43c5d2c1759926CAS | 10465522PubMed |

Sharon, N., and Lis, H. (2004). ‘Lectins.’ 2nd edn. (Springer: Dordrecht.)

Srivastav, A. (2000). Maturation-dependent glycoproteins containing both N- and O-linked oligosaccharides in epididymal sperm plasma membrane of rhesus monkeys (Macaca mulatta). J. Reprod. Fertil. 119, 241–252.
| 1:CAS:528:DC%2BD3cXltlyltr4%3D&md5=4b11e24bcda531b5762de17571e9e50aCAS | 10864836PubMed |

Stoddart, R. W., and Jones, C. J. P. (1998). Lectin histochemistry and cytochemistry: light microscopy. In ‘Lectin Methods and Protocols. Vol. 9.’ (Eds J. M. Rhodes and J. D. Milton.) pp. 21–39. (Humana Press: Totowa.)

Syntin, P., Dacheux, F., Druart, X., Gatti, J. L., Okamura, N., and Dacheux, J. L. (1996). Characterization and identification of proteins secreted in the various regions of the adult boar epididymis. Biol. Reprod. 55, 956–974.
Characterization and identification of proteins secreted in the various regions of the adult boar epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmtlamtrw%3D&md5=7ab1676c15e4bde74cfa8dbc5ee61c7dCAS | 8902205PubMed |

Thompson, R., Creavin, A., O’Connell, M., O’Connor, B., and Clarke, P. (2011). Optimization of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis. Anal. Biochem. 413, 114–122.
Optimization of the enzyme-linked lectin assay for enhanced glycoprotein and glycoconjugate analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFais74%3D&md5=400aaf66d1ac45a80448cffbd0369e3cCAS | 21320462PubMed |

Töpfer-Petersen, E. (1999). Carbohydrate-based interactions on the route of a spermatozoon to fertilization. Hum. Reprod. Update 5, 314–329.
Carbohydrate-based interactions on the route of a spermatozoon to fertilization.Crossref | GoogleScholarGoogle Scholar | 10465523PubMed |

Tulsiani, D. R. P. (2003). Glycan modifying enzymes in luminal fluid of rat epididymis: are they involved in altering sperm surface glycoproteins during maturation? Microsc. Res. Tech. 61, 18–27.
Glycan modifying enzymes in luminal fluid of rat epididymis: are they involved in altering sperm surface glycoproteins during maturation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslymt70%3D&md5=6cd32ec93cf665fa59483589b7165c19CAS |