Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Employing mated females as recipients for transfer of cloned dog embryos

Geon A Kim A , Hyun Ju Oh A , Jung Eun Park A , Min Jung Kim A , Eun Jung Park A , Sang Hyun Lim A B , Sung Keun Kang B , Goo Jang A and Byeong Chun Lee A C
+ Author Affiliations
- Author Affiliations

A Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, 151-744, Korea.

B Central Research Center, RNL BIO, Seoul, 153-768, Korea.

C Corresponding author. Email: bclee@snu.ac.kr

Reproduction, Fertility and Development 25(4) 700-706 https://doi.org/10.1071/RD11221
Submitted: 31 August 2011  Accepted: 29 May 2012   Published: 17 July 2012

Abstract

It has been suggested that co-transferring parthenogenetic embryos could improve the pregnancy success rate with cloned embryos in mammals. As an alternative to co-transferring parthenotes, in dogs we employed recipient females that possessed in vivo-fertilised embryos as a result of mating to determine whether mated bitches could be suitable recipients for cloned embryos. The effect of using mated recipients on implantation and pregnancy rates of canine somatic cell nuclear transfer embryos was also determined. Cloned embryos were transferred into the oviducts of naturally synchronous females that had mated with male dogs before ovulation. The pregnancy rate appeared to be similar between mated recipients (50%) and non-mated recipients (28.57%; P > 0.05). However, the delivery rate of cloned pups was significantly higher in mated recipients than non-mated recipients (10.53 vs 2.38%; P < 0.05). A decrease in progesterone levels in the mated recipients before the due date induced natural delivery. However, cloned pups in non-mated recipients were delivered by Caesarean section because the fall in progesterone concentration in these females did not occur until the due date. The present study demonstrated for the first time that mated female dogs can be used as recipients for cloned embryos.

Additional keywords: embryo transfer, mated recipient, nuclear transfer.


References

Canseco, R. S., Sparks, A. E., Page, R. L., Russell, C. G., Johnson, J. L., Velander, W. H., Pearson, R. E., Drohan, W. N., and Gwazdauskas, F. C. (1994). Gene transfer efficiency during gestation and the influence of co-transfer of non-manipulated embryos on production of transgenic mice. Transgenic Res. 3, 20–25.
Gene transfer efficiency during gestation and the influence of co-transfer of non-manipulated embryos on production of transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlvFKqur0%3D&md5=8911b3f754088371569adc0c0345bfe0CAS | 8142948PubMed |

Concannon, P. W., Butler, W. R., Hansel, W., Knight, P. J., and Hamilton, J. M. (1978). Parturition and lactation in the bitch: serum progesterone, cortisol and prolactin. Biol. Reprod. 19, 1113–1118.
Parturition and lactation in the bitch: serum progesterone, cortisol and prolactin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtFyrurY%3D&md5=e34c9fd5fa064151b00447f3f9258b5aCAS | 743546PubMed |

De Sousa, P. A., Dobrinsky, J. R., Zhu, J., Archibald, A. L., Ainslie, A., Bosma, W., Bowering, J., Bracken, J., Ferrier, P. M., Fletcher, J., Gasparrini, B., Harkness, L., Johnston, P., Ritchie, M., Ritchie, W. A., Travers, A., Albertini, D., Dinnyes, A., King, T. J., and Wilmut, I. (2002). Somatic cell nuclear transfer in the pig: control of pronuclear formation and integration with improved methods for activation and maintenance of pregnancy. Biol. Reprod. 66, 642–650.
Somatic cell nuclear transfer in the pig: control of pronuclear formation and integration with improved methods for activation and maintenance of pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvVeitbw%3D&md5=6c010a78cae76482cd0fc428e9d026ecCAS | 11870070PubMed |

Doak, R. L., Hall, A., and Dale, H. E. (1967). Longevity of spermatozoa in the reproductive tract of the bitch. J. Reprod. Fertil. 13, 51–58.
Longevity of spermatozoa in the reproductive tract of the bitch.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF2s%2FoslWrsg%3D%3D&md5=b9bf25b7f4579bf84ec123b3fa411e75CAS | 6066781PubMed |

Eilts, B. E., Davidson, A. P., Hosgood, G., Paccamonti, D. L., and Baker, D. G. (2005). Factors affecting gestation duration in the bitch. Theriogenology 64, 242–251.
Factors affecting gestation duration in the bitch.Crossref | GoogleScholarGoogle Scholar | 15955350PubMed |

England, G. C., Allen, W. E., and Blythe, S. A. (1989). Variability of the time of calculated LH release in 218 canine pregnancies. Vet. Rec. 125, 624–625.
| 1:STN:280:DyaK3c7kt1ektw%3D%3D&md5=2606210825f7350ac824e922b54d5a56CAS | 2617806PubMed |

Freshney, R. I. (2005). Principles of Cryopreservation. In ‘Culture of Animal Cells.’ (Ed. R. I. Freshney.) pp. 322–331. (John Wiley & Sons, Inc.: Hoboken, New Jersey)

Gavrilovic, B. B., Andersson, K., and Linde Forsberg, C. (2008). Reproductive patterns in the domestic dog – a retrospective study of the Drever breed. Theriogenology 70, 783–794.
Reproductive patterns in the domestic dog – a retrospective study of the Drever breed.Crossref | GoogleScholarGoogle Scholar | 18582927PubMed |

González-Bulnes, A., Baird, D. T., Campbell, B. K., Cocero, M. J., García-García, R. M., Inskeep, E. K., López-Sebastián, A., McNeilly, A. S., Santiago-Moreno, J., Souza, C. J., and Veiga-López, A. (2004). Multiple factors affecting the efficiency of multiple ovulation and embryo transfer in sheep and goats. Reprod. Fertil. Dev. 16, 421–435.
Multiple factors affecting the efficiency of multiple ovulation and embryo transfer in sheep and goats.Crossref | GoogleScholarGoogle Scholar | 15315741PubMed |

Hong, S. G., Jang, G., Kim, M. K., Oh, H. J., Park, J. E., Kang, J. T., Koo, O. J., Kim, D. Y., and Lee, B. C. (2009a). Dogs cloned from fetal fibroblasts by nuclear transfer. Anim. Reprod. Sci. 115, 334–339.
Dogs cloned from fetal fibroblasts by nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2hsrw%3D&md5=f463d511eb21e4c989699230d84999fbCAS | 19135320PubMed |

Hong, S. G., Kim, M. K., Jang, G., Oh, H. J., Park, J. E., Kang, J. T., Koo, O. J., Kim, T., Kwon, M. S., Koo, B. C., Ra, J. C., Kim, D. Y., Ko, C., and Lee, B. C. (2009b). Generation of red fluorescent protein transgenic dogs. Genesis 47, 314–322.
Generation of red fluorescent protein transgenic dogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslKlsbc%3D&md5=3c408ff8c64f844b0bfc0186e69884e5CAS | 19358155PubMed |

Hossein, M. S., Kim, M. K., Jang, G., Fibrianto, H. Y., Oh, H. J., Kim, H. J., Kang, S. K., and Lee, B. C. (2007). Influence of season and parity on the recovery of in vivo canine oocytes by flushing fallopian tubes. Anim. Reprod. Sci. 99, 330–341.
Influence of season and parity on the recovery of in vivo canine oocytes by flushing fallopian tubes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjslGkurk%3D&md5=dba8119db5bf3c3f922bc8ab8cdd6fadCAS | 16806748PubMed |

Jang, G., Kim, M. K., Oh, H. J., Hossein, M. S., Fibrianto, Y. H., Hong, S. G., Park, J. E., Kim, J. J., Kim, H. J., Kang, S. K., Kim, D. Y., and Lee, B. C. (2007). Birth of viable female dogs produced by somatic cell nuclear transfer. Theriogenology 67, 941–947.
Birth of viable female dogs produced by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7hsVKkuw%3D%3D&md5=e2dbe36555466d0e305a9eaf6d363d02CAS | 17169419PubMed |

Jang, G., Hong, S. G., Oh, H. J., Kim, M. K., Park, J. E., Kim, H. J., Kim, D. Y., and Lee, B. C. (2008). A cloned toy poodle produced from somatic cells derived from an aged female dog. Theriogenology 69, 556–563.
A cloned toy poodle produced from somatic cells derived from an aged female dog.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislKksb8%3D&md5=f5d2db0743f9c82001b5e9f12e792ed3CAS | 18243292PubMed |

Jang, G., Kim, M. K., and Lee, B. C. (2010). Current status and applications of somatic cell nuclear transfer in dogs. Theriogenology 74, 1311–1320.
Current status and applications of somatic cell nuclear transfer in dogs.Crossref | GoogleScholarGoogle Scholar | 20688377PubMed |

Kawarasaki, T., Otake, M., Tsuchiya, S., Shibata, M., Matsumoto, K., and Isobe, N. (2009). Co-transfer of parthenogenotes and single porcine embryos leads to full-term development of the embryos. Anim. Reprod. Sci. 112, 8–21.
Co-transfer of parthenogenotes and single porcine embryos leads to full-term development of the embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVWktbg%3D&md5=64459efaaa21a495d7ae49edfb653927CAS | 18490116PubMed |

Kim, M. J., Oh, H. J., Park, J. E., Hong, S. G., Kang, J. T., Koo, O. J., Kang, S. K., Jang, G., and Lee, B. C. (2010). Influence of oocyte donor and embryo recipient conditions on cloning efficiency in dogs. Theriogenology 74, 473–478.
Influence of oocyte donor and embryo recipient conditions on cloning efficiency in dogs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnntVOitw%3D%3D&md5=a95735b2eb47eaae8bf32b690d8099fdCAS | 20452009PubMed |

King, T. J., Dobrinsky, J. R., Zhu, J., Finlayson, H. A., Bosma, W., Harkness, L., Ritchie, W. A., Travers, A., McCorquodale, C., Day, B. N., Dinnyes, A., De Sousa, P. A., and Wilmut, I. (2002). Embryo development and establishment of pregnancy after embryo transfer in pigs: coping with limitations in the availability of viable embryos. Reproduction 123, 507–515.
Embryo development and establishment of pregnancy after embryo transfer in pigs: coping with limitations in the availability of viable embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGhtb4%3D&md5=fdcd561667b1ec2e904e96bebc85ee7eCAS | 11914113PubMed |

Lai, L., Park, K. W., Cheong, H. T., Kuhholzer, B., Samuel, M., Bonk, A., Im, G. S., Rieke, A., Day, B. N., Murphy, C. N., Carter, D. B., and Prather, R. S. (2002). Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol. Reprod. Dev. 62, 300–306.
Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktlWkurc%3D&md5=c106a4dc5cd061c2b646836b0b0eb5d5CAS | 12112592PubMed |

Lee, B. C., Kim, M. K., Jang, G., Oh, H. J., Yuda, F., Kim, H. J., Hossein, M. S., Kim, J. J., Kang, S. K., Schatten, G., and Hwang, W. S. (2005). Dogs cloned from adult somatic cells. Nature 436, 641.
Dogs cloned from adult somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFentLY%3D&md5=690aaaa3954a8dc17a8c4cbaab4c21fcCAS | 16079832PubMed |

Meng, Q., Wang, M., Stanca, C. A., Bodo, S., and Dinnyes, A. (2008). Co-transfer of parthenogenetic embryos improves the pregnancy and implantation of nuclear transfer embryos in mouse. Cloning Stem Cells 10, 429–434.
Co-transfer of parthenogenetic embryos improves the pregnancy and implantation of nuclear transfer embryos in mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVGhtbjO&md5=4d75e00ed82143d87a49fcb3cd9faa8dCAS | 18752415PubMed |

Meng, Q., Polgar, Z., Liu, J., and Dinnyes, A. (2009). Live birth of somatic cell-cloned rabbits following trichostatin A treatment and co-transfer of parthenogenetic embryos. Cloning Stem Cells 11, 203–208.
Live birth of somatic cell-cloned rabbits following trichostatin A treatment and co-transfer of parthenogenetic embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Cmtb8%3D&md5=48f7184eb788c25b5417399967ae8bcbCAS | 19196041PubMed |

Oh, H. J., Kim, M. K., Jang, G., Kim, H. J., Hong, S. G., Park, J. E., Park, K., Park, C., Sohn, S. H., Kim, D. Y., Shin, N. S., and Lee, B. C. (2008). Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology 70, 638–647.
Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1crmvFWlsw%3D%3D&md5=c9317707dfb10f2b545c51b05b1b8024CAS | 18534672PubMed |

Oh, H. J., Hong, S. G., Park, J. E., Kang, J. T., Kim, M. J., Kim, M. K., Kang, S. K., Kim, D. Y., Jang, G., and Lee, B. C. (2009). Improved efficiency of canine nucleus transfer using roscovitine-treated canine fibroblasts. Theriogenology 72, 461–470.
Improved efficiency of canine nucleus transfer using roscovitine-treated canine fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptl2nsr0%3D&md5=e417f8189a422d44560e6cb0c61e8007CAS | 19497615PubMed |

Oh, H. J., Park, J. E., Kim, M. J., Hong, S. G., Ra, J. C., Jo, J. Y., Kang, S. K., Jang, G., and Lee, B. C. (2011). Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology 75, 1221–1231.
Recloned dogs derived from adipose stem cells of a transgenic cloned beagle.Crossref | GoogleScholarGoogle Scholar | 21220163PubMed |

Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T., Hanada, H., and Perry, A. C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289, 1188–1190.
Pig cloning by microinjection of fetal fibroblast nuclei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmt1WhsL8%3D&md5=4b523007ad61627401f6cdac28338ee9CAS | 10947985PubMed |

Park, J. E., Oh, H. J., Hong, S. G., Kim, M. J., Kim, G. A., Koo, O. J., Kang, S. K., Jang, G., and Lee, B. C. (2010). Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer. Theriogenology 75, 777–782.
Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar |

Petersen, B., Lucas-Hahn, A., Oropeza, M., Hornen, N., Lemme, E., Hassel, P., Queisser, A. L., and Niemann, H. (2008). Development and validation of a highly efficient protocol of porcine somatic cloning using preovulatory embryo transfer in peripubertal gilts. Cloning Stem Cells 10, 355–362.
Development and validation of a highly efficient protocol of porcine somatic cloning using preovulatory embryo transfer in peripubertal gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOmu7%2FL&md5=de7bc0065e1bcf3a97e80e054eec1c6fCAS | 18729768PubMed |

Popova, E., Bader, M., and Krivokharchenko, A. (2006). Full-term development of rat after transfer of nuclei from two-cell stage embryos. Biol. Reprod. 75, 524–530.
Full-term development of rat after transfer of nuclei from two-cell stage embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCgs73O&md5=ff99574ee5c4afa0ddba50536acf0430CAS | 16807380PubMed |

Verma, P. J., Du, Z. T., Crocker, L., Faast, R., Grupen, C. G., McIlfatrick, S. M., Ashman, R. J., Lyons, I. G., and Nottle, M. B. (2000). In vitro development of porcine nuclear transfer embryos constructed using fetal fibroblasts. Mol. Reprod. Dev. 57, 262–269.
In vitro development of porcine nuclear transfer embryos constructed using fetal fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnt1yls7g%3D&md5=0afa1d0c83dc6fb709dd83b7b1003475CAS | 11013434PubMed |