Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Lonidamine-ethyl ester-mediated remodelling of the Sertoli cell cytoskeleton induces phosphorylation of plakoglobin and promotes its interaction with α-catenin at the blood–testis barrier

Dolores D. Mruk A D , Michele Bonanomi B C and Bruno Silvestrini B C
+ Author Affiliations
- Author Affiliations

A Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, USA.

B S.B.M. Srl–Science of Biology in Medicine, Via Domenico Tardini 35-00167 Rome, Italy.

C Noopolis Foundation, Via Domenico Tardini 35-00167, Rome, Italy.

D Corresponding author. Email: mruk@popcbr.rockefeller.edu

Reproduction, Fertility and Development 29(5) 998-1011 https://doi.org/10.1071/RD15378
Submitted: 20 September 2015  Accepted: 27 January 2016   Published: 7 March 2016

Abstract

Several compounds affect male fertility by disrupting the adhesion of germ cells to Sertoli cells, which results in the release of undeveloped germ cells into the seminiferous tubule lumen that are incapable of fertilising the ovum. Indazole carboxylic acids are one class of compounds exhibiting such effects and they have been investigated as non-hormonal contraceptives for potential human use. The aims of this study were to investigate the effects of lonidamine-ethyl ester, an indazole carboxylic acid, on spermatogenesis and cell junctions, in particular, desmosomes. We found two doses of lonidamine-ethyl ester at 50 mg kg–1 to disrupt Sertoli–germ cell adhesion. By light and fluorescent microscopy, pronounced changes were observed in the distribution of actin microfilaments and intermediate filaments, as well as in the localisation of plakoglobin, a protein with structural and signalling roles at the desmosome and adherens junction at the blood–testis barrier. Furthermore, immunoblotting and immunoprecipitation experiments using testis lysates revealed a significant upregulation (P < 0.01) of plakoglobin and Tyr-phosphorylated plakoglobin. Co-immunoprecipitation experiments showed an increase in the interaction between plakoglobin and fyn proto-oncogene, an Src family non-receptor tyrosine kinase, after treatment, as well as an increase in the interaction between plakoglobin and α-catenin. Taken collectively, these data indicate that a disruption of Sertoli cell and spermatocyte–spermatid adhesion in the seminiferous epithelium by lonidamine-ethyl ester results in the phosphorylation of plakoglobin, thereby promoting its interaction with α-catenin at the blood–testis barrier.

Additional keywords: adjudin, male contraception, spermatogenesis.


References

Bignold, L. P. (2006). Alkylating agents and DNA polymerases. Anticancer Res. 26, 1327–1336.
| 1:CAS:528:DC%2BD28XktVGrur0%3D&md5=96fc5ec0d47c5da63f7e2d338044588fCAS | 16619541PubMed | open url image1

Borradori, L., and Sonnenberg, A. (1999). Structure and function of hemidesmosomes: more than simple adhesion complexes. J. Invest. Dermatol. 112, 411–418.
Structure and function of hemidesmosomes: more than simple adhesion complexes.CrossRef | 1:CAS:528:DyaK1MXit1Ojtro%3D&md5=4a60a143241bda1ff3a61c53777dbebbCAS | 10201522PubMed | open url image1

Brawer, M. K. (2005). Lonidamine: basic science and rationale for treatment of prostatic proliferative disorders. Rev. Urol. 7, S21–S26.
| 16986057PubMed | open url image1

Byers, S. W., Sujarit, S., Jegou, B., Butz, S., Hoschutzky, H., Herrenknecht, K., MacCalman, C., and Blaschuk, O. W. (1994). Cadherins and cadherin-associated molecules in the developing and maturing rat testis. Endocrinology 134, 630–639.
| 1:CAS:528:DyaK2cXhvVOqur8%3D&md5=2c2e561a1a19d4fb58246c155218de3fCAS | 7507830PubMed | open url image1

Cadigan, K. M., and Peifer, M. (2009). Wnt signalling from development to disease: insights from model systems. Cold Spring Harb. Perspect. Biol. 1, a002881.
Wnt signalling from development to disease: insights from model systems.CrossRef | 20066091PubMed | open url image1

Caputo, A., and Silvestrini, B. (1984). Lonidamine, a new approach to cancer therapy. Oncology 41, 2–6.
Lonidamine, a new approach to cancer therapy.CrossRef | 1:CAS:528:DyaL2cXktFKmtb8%3D&md5=4ca9f3b283dcfbb04f55a93716e896feCAS | 6371644PubMed | open url image1

Chen, Y. M., Lee, N. P. Y., Mruk, D. D., Lee, W. M., and Cheng, C. Y. (2003). Fer kinase/Fer T and adherens junction dynamics in the testis: an in vitro and in vivo study. Biol. Reprod. 69, 656–672.
Fer kinase/Fer T and adherens junction dynamics in the testis: an in vitro and in vivo study.CrossRef | 1:CAS:528:DC%2BD3sXlvVeru7s%3D&md5=70a117f1563a12274db0692ba60b290aCAS | 12700184PubMed | open url image1

Cheng, C. Y., Silvestrini, B., Grima, J., Mo, M. Y., Zhu, L. J., Johansson, E., Saso, L., Leone, M. G., Palmery, M., and Mruk, D. (2001). Two new male contraceptives exert their effects by depleting germ cells prematurely from the testis. Biol. Reprod. 65, 449–461.
Two new male contraceptives exert their effects by depleting germ cells prematurely from the testis.CrossRef | 1:CAS:528:DC%2BD3MXls1Wgu7c%3D&md5=aad329426e75642ae61a71a07ffe5f2fCAS | 11466213PubMed | open url image1

Cheng, C. Y., Mo, M. Y., Grima, J., Saso, L., Tita, B., Mruk, D., and Silvestrini, B. (2002). Indazole carboxylic acids in male contraception. Contraception 65, 265–268.
Indazole carboxylic acids in male contraception.CrossRef | 1:CAS:528:DC%2BD38XjvVSnsbw%3D&md5=403806237567ad43a30f8ecbb8481e6fCAS | 12020774PubMed | open url image1

De Martino, C., Malcorni, W., Bellocci, M., Floridi, A., and Marcante, M. L. (1981). Effects of AF1312 TS and lonidamine on mammalian testis. A morphological study. Chemotherapy 27, 27–42.
Effects of AF1312 TS and lonidamine on mammalian testis. A morphological study.CrossRef | 1:CAS:528:DyaL38XivVyhuw%3D%3D&md5=a481d587c6428f5027fea4a7ad91d94cCAS | 7285636PubMed | open url image1

Di Cosimo, S., Ferretti, G., Papaldo, P., Carlini, P., Fabi, A., and Cognetti, F. (2003). Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumours. Drugs Today (Barc) 39, 157–174.
Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumours.CrossRef | 1:CAS:528:DC%2BD3sXktF2gsLs%3D&md5=189ed20058a37b20734f1891a3f7063cCAS | 12730701PubMed | open url image1

Dupin, I., and Etienne-Manneville, S. (2011). Nuclear positioning: mechanisms and functions. Int. J. Biochem. Cell Biol. 43, 1698–1707.
Nuclear positioning: mechanisms and functions.CrossRef | 1:CAS:528:DC%2BC3MXhtl2gsrjN&md5=25d728181363a61354cc45e2b2670c4bCAS | 21959251PubMed | open url image1

Ellenbroek, S. I., Iden, S., and Collard, J. G. (2012). Cell polarity proteins and cancer. Semin. Cancer Biol. 22, 208–215.
Cell polarity proteins and cancer.CrossRef | 1:CAS:528:DC%2BC38Xnt12kur0%3D&md5=18fa8900beb38f4b4916bb68eb8a46e7CAS | 22465739PubMed | open url image1

Floridi, A., Paggi, M. G., D’Atri, S., DeMartino, C., Marcante, M. L., Silvestrini, B., and Caputo, A. (1981a). Effect of lonidamine on the energy metabolism of Ehrlich ascites tumour cells. Cancer Res. 41, 4661–4666.
| 1:CAS:528:DyaL38Xktl0%3D&md5=9226690adf3ece5009cc0e4276d9a2cfCAS | 7306982PubMed | open url image1

Floridi, A., Paggi, M. G., Marcante, M. L., Silvestrini, B., Caputo, A., and De Martino, C. (1981b). Lonidamine, a selective inhibitor of aerobic glycolysis of murine tumour cells. J. Natl. Cancer Inst. 66, 497–499.
| 1:CAS:528:DyaL3MXhsFSit70%3D&md5=16ccca66269543318e9dcb4cf645d8adCAS | 6937706PubMed | open url image1

Fu, D., Calvo, J. A., and Samson, L. D. (2012). Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat. Rev. Cancer 12, 104–120.
| 1:CAS:528:DC%2BC38XlsFygtQ%3D%3D&md5=8a40bdf776469c154bfdd81a726321ddCAS | 22237395PubMed | open url image1

Gödde, N. J., Pearson, H. B., Smith, L. K., and Humbert, P. O. (2014). Dissecting the role of polarity regulators in cancer through the use of mouse models. Exp. Cell Res. 328, 249–257.
Dissecting the role of polarity regulators in cancer through the use of mouse models.CrossRef | 25179759PubMed | open url image1

Green, K. J., Getsios, S., Troyanovsky, S., and Godsel, L. M. (2010). Intercellular junction assembly, dynamics and homeostasis. Cold Spring Harb. Perspect. Biol. 2, a000125.
Intercellular junction assembly, dynamics and homeostasis.CrossRef | 20182611PubMed | open url image1

Grima, J., Silvestrini, B., and Cheng, C. Y. (2001). Reversible inhibition of spermatogenesis in rats using a new male contraceptive, 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide. Biol. Reprod. 64, 1500–1508.
Reversible inhibition of spermatogenesis in rats using a new male contraceptive, 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide.CrossRef | 1:CAS:528:DC%2BD3MXjtFKqs7c%3D&md5=d450debbacd9393b3064c7511ac426acCAS | 11319158PubMed | open url image1

Hu, G. X., Hu, L. F., Yang, D. Z., Li, J. W., Chen, G. R., Chen, B. B., Mruk, D. D., Bonanomi, M., Silvestrini, B., Cheng, C. Y., and Ge, R. S. (2009). Adjudin targeting rabbit germ cell adhesion as a male contraceptive: a pharmacokinetic study. J. Androl. 30, 87–93.
Adjudin targeting rabbit germ cell adhesion as a male contraceptive: a pharmacokinetic study.CrossRef | 18802200PubMed | open url image1

Kopera, I. A., Su, L., Bilinska, B., Cheng, C. Y., and Mruk, D. D. (2009). An in vivo study on adjudin and blood–testis barrier dynamics. Endocrinology 150, 4724–4733.
An in vivo study on adjudin and blood–testis barrier dynamics.CrossRef | 1:CAS:528:DC%2BD1MXht1OktrvI&md5=de0735ec5bd291770add3d62e106f700CAS | 19574397PubMed | open url image1

Kowalczyk, A. P., and Green, K. J. (2013). Structure, function and regulation of desmosomes. Prog. Mol. Biol. Transl. Sci. 116, 95–118.
Structure, function and regulation of desmosomes.CrossRef | 1:CAS:528:DC%2BC3sXpsVOru70%3D&md5=b40f2833f841f7006321ddc4e7b3b650CAS | 23481192PubMed | open url image1

Küppers, V., Vockel, M., Nottebaum, A. F., and Vestweber, D. (2014). Phosphatases and kinases as regulators of the endothelial barrier function. Cell Tissue Res. 355, 577–586.
Phosphatases and kinases as regulators of the endothelial barrier function.CrossRef | 24566520PubMed | open url image1

Li, S., and Huang, L. (1997). In vivo gene transfer via intravenous administration of cationic lipid–protamine–DNA (LPD) complexes. Gene Ther. 4, 891–900.
In vivo gene transfer via intravenous administration of cationic lipid–protamine–DNA (LPD) complexes.CrossRef | 1:CAS:528:DyaK2sXmtVSkurY%3D&md5=c88d71a11f1e159849fe1f618b4b00beCAS | 9349425PubMed | open url image1

Li, S., Rizzo, M. A., Bhattacharya, S., and Huang, L. (1998). Characterisation of cationic lipid–protamine–DNA (LPD) complexes for intravenous gene delivery. Gene Ther. 5, 930–937.
Characterisation of cationic lipid–protamine–DNA (LPD) complexes for intravenous gene delivery.CrossRef | 1:CAS:528:DyaK1cXksFWkurk%3D&md5=4380cd8d9a5d428932271517bfb795f9CAS | 9813664PubMed | open url image1

Lie, P. P. Y., Cheng, C. Y., and Mruk, D. D. (2010). The desmoglein-2/desmocollin-2/Src kinase protein complex regulates blood–testis barrier dynamics. Int. J. Biochem. Cell Biol. 42, 975–986.
The desmoglein-2/desmocollin-2/Src kinase protein complex regulates blood–testis barrier dynamics.CrossRef | 1:CAS:528:DC%2BC3cXlsFKmsbo%3D&md5=9f27c82640f22b78d359c1f99e2346d1CAS | open url image1

Lie, P. P. Y., Cheng, C. Y., and Mruk, D. D. (2011). The biology of the desmosome-like junction: a versatile anchoring junction and signal transducer in the seminiferous epithelium. Int. Rev. Cell Mol. Biol. 286, 223–269.
The biology of the desmosome-like junction: a versatile anchoring junction and signal transducer in the seminiferous epithelium.CrossRef | 1:CAS:528:DC%2BC3MXksFSks7k%3D&md5=2ddc4fc516a50f270d65d7bbb1b8500dCAS | open url image1

Malorni, W., Meschini, S., Matarrese, P., and Arancia, G. (1992). The cytoskeleton as a subcellular target of the antineoplastic drug lonidamine. Anticancer Res. 12, 2037–2045.
| 1:CAS:528:DyaK3sXitVCrsbg%3D&md5=ea1705ecf77d6cd9e4fee2be3c2809c7CAS | 1295447PubMed | open url image1

Maranghi, F., Mantovani, A., Macri, C., Romeo, A., Eleuteri, P., Leter, G., Rescis, M., Spano, M., and Saso, L. (2005). Long-term effects of lonidamine on mouse testes. Contraception 72, 268–272.
Long-term effects of lonidamine on mouse testes.CrossRef | 1:CAS:528:DC%2BD2MXhtVeiu7fK&md5=454f13a53f05dc69f91ae6fd21db2390CAS | 16181970PubMed | open url image1

Mathupala, S. P., Ko, Y. H., and Pedersen, P. L. (2010). The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim. Biophys. Acta 1797, 1225–1230.
The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies.CrossRef | 1:CAS:528:DC%2BC3cXnvV2ru7w%3D&md5=ffaa4d59b7c9ec2b9c249b49ffd97166CAS | 20381449PubMed | open url image1

McCole, D. F. (2013). Phosphatase regulation of intercellular junctions. Tissue Barriers 1, e26713.
Phosphatase regulation of intercellular junctions.CrossRef | 24868494PubMed | open url image1

Miccoli, L., Poirson-Bichat, F., Sureau, F., Goncalves, R. B., Bourgeois, Y., Dutrillaux, B., Poupon, M. F., and Oudard, S. (1998). Potentiation of lonidamine and diazepam, two agents acting on mitochondria, in human glioblastoma treatment. J. Natl. Cancer Inst. 90, 1400–1406.
Potentiation of lonidamine and diazepam, two agents acting on mitochondria, in human glioblastoma treatment.CrossRef | 1:CAS:528:DyaK1cXmtlelu74%3D&md5=b286ccb79fac05da8f8c7000eb740a4bCAS | 9747871PubMed | open url image1

Miravet, S., Piedra, J., Castano, J., Raurell, I., Franci, C., Dunach, M., and Garcia de Herreros, A. (2003). Tyrosine phosphorylation of plakoglobin causes contrary effects on its association with desmosomes and adherens junction components and modulates β-catenin-mediated transcription. Mol. Cell. Biol. 23, 7391–7402.
Tyrosine phosphorylation of plakoglobin causes contrary effects on its association with desmosomes and adherens junction components and modulates β-catenin-mediated transcription.CrossRef | 1:CAS:528:DC%2BD3sXotVSru7c%3D&md5=f50cafa9542bee0ad6af32d2d1025232CAS | 14517306PubMed | open url image1

Mruk, D. D., and Cheng, C. Y. (2004a). Cell–cell interactions at the ectoplasmic specialisation in the testis. Trends Endocrinol. Metab. 15, 439–447.
Cell–cell interactions at the ectoplasmic specialisation in the testis.CrossRef | 1:CAS:528:DC%2BD2cXptFOmurs%3D&md5=e1e68d158091581f377e99eab60f808aCAS | 15519891PubMed | open url image1

Mruk, D. D., and Cheng, C. Y. (2004b). Sertoli–Sertoli and Sertoli–germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr. Rev. 25, 747–806.
Sertoli–Sertoli and Sertoli–germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis.CrossRef | 1:CAS:528:DC%2BD2cXhtVSjtrnP&md5=a5aebcec96bc23e27893b1c309b2a6baCAS | 15466940PubMed | open url image1

Mruk, D. D., and Cheng, C. Y. (2011). Enhanced chemiluminescence (ECL) for routine immunoblotting: an inexpensive alternative to commercially available kits. Spermatogenesis 1, 121–122.
Enhanced chemiluminescence (ECL) for routine immunoblotting: an inexpensive alternative to commercially available kits.CrossRef | 22319660PubMed | open url image1

Mruk, D. D., Wong, C. H., Silvestrini, B., and Cheng, C. Y. (2006). A male contraceptive targeting germ cell adhesion. Nat. Med. 12, 1323–1328.
A male contraceptive targeting germ cell adhesion.CrossRef | 1:CAS:528:DC%2BD28XhtFKlsLbM&md5=e161c96edb2babb998e9e3b89c513f1aCAS | 17072312PubMed | open url image1

Mruk, D. D., Silvestrini, B., and Cheng, C. Y. (2008). Anchoring junctions as drug targets: role in contraceptive development. Pharmacol. Rev. 60, 146–180.
Anchoring junctions as drug targets: role in contraceptive development.CrossRef | 1:CAS:528:DC%2BD1MXitlWlsr8%3D&md5=99aa029e43fc14eb6eb0833cdb0f7ec7CAS | 18483144PubMed | open url image1

Muñoz-Pinedo, C., Mjiyad, N. E., and Ricci, J.-E. (2012). Cancer metabolism: current perspectives and future directions. Cell Death Dis. 3, e248.
Cancer metabolism: current perspectives and future directions.CrossRef | 22237205PubMed | open url image1

Ning, S. C., and Hahn, G. M. (1990). Cytotoxicity of lonidamine alone and in combination with other drugs against murine RIF-1 and human HT1080 cells in vitro. Cancer Res. 50, 7867–7870.
| 1:CAS:528:DyaK3MXjsFGksA%3D%3D&md5=7181413e89b5301531fe1aeb1836cc9cCAS | 2253227PubMed | open url image1

Paranko, J., Kallajoki, M., Pelliniemi, L. J., Lehto, V. P., and Virtanen, I. (1986). Transient coexpression of cytokeratin and vimentin in differentiating rat Sertoli cells. Dev. Biol. 117, 35–44.
Transient coexpression of cytokeratin and vimentin in differentiating rat Sertoli cells.CrossRef | 1:CAS:528:DyaL28Xls12ls7w%3D&md5=fc1293fd89367bb545d9e2279480409fCAS | 2427374PubMed | open url image1

Price, G. S., Page, R. L., Riviere, J. E., Cline, J. M., and Thrall, D. E. (1996). Pharmacokinetics and toxicity of oral and intravenous lonidamine in dogs. Cancer Chemother. Pharmacol. 38, 129–135.
Pharmacokinetics and toxicity of oral and intravenous lonidamine in dogs.CrossRef | 1:CAS:528:DyaK28XjslCls7c%3D&md5=143abe5168a99b0a8ecd972af1ba1c70CAS | 8616902PubMed | open url image1

Rosenbluh, J., Wang, X., and Hahn, W. C. (2014). Genomic insights into WNT/β-catenin signalling. Trends Pharmacol. Sci. 35, 103–109.
Genomic insights into WNT/β-catenin signalling.CrossRef | 1:CAS:528:DC%2BC3sXitVSgs7fK&md5=bcb07a01be46d0d3137978d2395359faCAS | 24365576PubMed | open url image1

Russell, L. (1977a). Desmosome-like junctions between Sertoli and germ cells in the rat testis. Am. J. Anat. 148, 301–312.
Desmosome-like junctions between Sertoli and germ cells in the rat testis.CrossRef | 1:STN:280:DyaE2s7nvFSmsA%3D%3D&md5=a4732d89e5dfc6af1c9ac5f22d542768CAS | 857631PubMed | open url image1

Russell, L. (1977b). Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Am. J. Anat. 148, 313–328.
Movement of spermatocytes from the basal to the adluminal compartment of the rat testis.CrossRef | 1:STN:280:DyaE2s7nvFSmsQ%3D%3D&md5=8ea41fef9c2f767a69e84358403810eaCAS | 857632PubMed | open url image1

Russell, L. D. (1993). Morphological and functional evidence for Sertoli–germ cell relationships. In ‘The Sertoli Cell’. (Eds L. D. Russell, M. D. Griswold.) pp. 365–390. (Cache River Press: Clearwater, FL.)

Savini, S., Zoli, W., Nanni, O., Volpi, A., Frassineti, G. L., Magni, E., Flamigni, A., Amadori, A., and Amadori, D. (1992). In vitro potentiation by lonidamine of the cytotoxic effect of adriamycin on primary and established breast cancer cell lines. Breast Cancer Res. Treat. 24, 27–34.
In vitro potentiation by lonidamine of the cytotoxic effect of adriamycin on primary and established breast cancer cell lines.CrossRef | 1:CAS:528:DyaK3sXhtl2gtL4%3D&md5=2e114bd0b08905fb45698ec9df82e0f9CAS | 1463869PubMed | open url image1

Tojkander, S., Gateva, G., and Lappalainen, P. (2012). Actin stress fibres – assembly, dynamics and biological roles. J. Cell Sci. 125, 1855–1864.
Actin stress fibres – assembly, dynamics and biological roles.CrossRef | 1:CAS:528:DC%2BC38XhtVGltrzF&md5=2a2dc891dd4402123acc5c8be92c28b5CAS | 22544950PubMed | open url image1

Toyama, Y. (1976). Actin-like filaments in the Sertoli cell junctional specialisations in the swine and mouse testis. Anat. Rec. 186, 477–491.
Actin-like filaments in the Sertoli cell junctional specialisations in the swine and mouse testis.CrossRef | 1:STN:280:DyaE2s%2FosFKgug%3D%3D&md5=f515251972d0ae3131f5100531deb8b3CAS | 795323PubMed | open url image1

Traina, M. E., Guarino, M., Urbani, E., Saso, L., Eleuteri, P., Cordelli, E., Rescia, M., Leter, G., and Spano, M. (2005). Lonidamine transiently affects spermatogenesis in pubertal CD1 mice. Contraception 72, 262–267.
Lonidamine transiently affects spermatogenesis in pubertal CD1 mice.CrossRef | 1:CAS:528:DC%2BD2MXhtVeiu7fJ&md5=d4ca652f069ecf3ed3d3a62ccbc98478CAS | 16181969PubMed | open url image1

Traina, M. E., Guarino, M., Natoli, A., Romeo, A., and Urbani, E. (2007). Lonidamine affects testicular steroid hormones in immature mice. Toxicol. Appl. Pharmacol. 221, 95–101.
Lonidamine affects testicular steroid hormones in immature mice.CrossRef | 1:CAS:528:DC%2BD2sXltF2ksLs%3D&md5=0dcafdfaca9aae9312fb47f08da49823CAS | 17442358PubMed | open url image1

Vogl, A. W., and Soucy, L. J. (1985). Arrangement and possible function of actin filament bundles in ectoplasmic specialisations of ground squirrel Sertoli cells. J. Cell Biol. 100, 814–825.
Arrangement and possible function of actin filament bundles in ectoplasmic specialisations of ground squirrel Sertoli cells.CrossRef | 1:CAS:528:DyaL2MXht12gtr8%3D&md5=20769fe6d5144fb3e337549a508964a3CAS | 3882723PubMed | open url image1

Vogl, A. W., Vaid, K. S., and Guttman, J. A. (2008). The Sertoli cell cytoskeleton. In ‘Molecular Mechanisms in Spermatogenesis’. (Ed. C. Y. Cheng.) pp. 186–211. (Landes Bioscience and Springer Science+Business Media: Austin, TX, USA.)

Wolosewick, J. J., De Mey, J., and Meininger, V. (1984). Ultrastructural localisation of tubulin and actin in polyethylene glycol-embedded rat seminiferous epithelium by immunogold staining. Biol. Cell 49, 219–226.
Ultrastructural localisation of tubulin and actin in polyethylene glycol-embedded rat seminiferous epithelium by immunogold staining.CrossRef | open url image1

Yan, H. H. N., and Cheng, C. Y. (2005). Blood–testis barrier dynamics are regulated by an engagement–disengagement mechanism between tight and adherens junctions via peripheral adaptors. Proc. Natl. Acad. Sci. USA 102, 11722–11727.
Blood–testis barrier dynamics are regulated by an engagement–disengagement mechanism between tight and adherens junctions via peripheral adaptors.CrossRef | 1:CAS:528:DC%2BD2MXpsFGgt7g%3D&md5=709f6090f1998820ed7667c39935501dCAS | open url image1

You, H., Lei, P., and Andreadis, S. T. (2013). JNK is a novel regulator of intercellular adhesion. Tissue Barriers 1, e26845.
JNK is a novel regulator of intercellular adhesion.CrossRef | 24868495PubMed | open url image1

Zhurinsky, J., Shtutman, M., and Ben-Ze’ev, A. (2000). Plakoglobin and β-catenin: protein interactions, regulation and biological roles. J. Cell Sci. 113, 3127–3139.
| 1:CAS:528:DC%2BD3cXnsVyltL4%3D&md5=39ed6d748fa59b558f20b226e9d8e626CAS | 10954412PubMed | open url image1



Rent Article (via Deepdyve) Export Citation