Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Poly(A)-binding proteins are required for translational regulation in vertebrate oocytes and early embryos

Saffet Ozturk A B and Fatma Uysal A
+ Author Affiliations
- Author Affiliations

A Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey.

B Corresponding author. Email: sozturk@akdeniz.edu.tr

Reproduction, Fertility and Development 29(10) 1890-1901 https://doi.org/10.1071/RD16283
Submitted: 20 July 2016  Accepted: 1 December 2016   Published: 20 January 2017

Abstract

Poly(A)-binding proteins (PABPs) function in the timely regulation of gene expression during oocyte maturation, fertilisation and early embryo development in vertebrates. To this end, PABPs bind to poly(A) tails or specific sequences of maternally stored mRNAs to protect them from degradation and to promote their translational activities. To date, two structurally different PABP groups have been identified: (1) cytoplasmic PABPs, including poly(A)-binding protein, cytoplasmic 1 (PABPC1), embryonic poly(A)-binding protein (EPAB), induced PABP and poly(A)-binding protein, cytoplasmic 3; and (2) nuclear PABPs, namely embryonic poly(A)-binding protein 2 and nuclear poly(A)-binding protein 1. Many studies have been undertaken to characterise the spatial and temporal expression patterns and subcellular localisations of PABPC1 and EPAB in vertebrate oocytes and early embryos. In the present review, we comprehensively evaluate and discuss the expression patterns and particular functions of the EPAB and PABPC1 genes, especially in mouse and human oocytes and early embryos.

Additional keywords: embryonic poly(A)-binding protein (EPAB), poly(A)-binding protein, cytoplasmic 1 (PABPC1), translation.


References

Adam, S. A., Nakagawa, T., Swanson, M. S., Woodruff, T. K., and Dreyfuss, G. (1986). mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol. Cell. Biol. 6, 2932–2943.
mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence.CrossRef | 1:CAS:528:DyaL28Xlt1ylt7k%3D&md5=472c44ea40183ec494cf2f0b2a902d28CAS |

Afonina, E., Stauber, R., and Pavlakis, G. N. (1998). The human poly(A)-binding protein 1 shuttles between the nucleus and the cytoplasm. J. Biol. Chem. 273, 13 015–13 021.
The human poly(A)-binding protein 1 shuttles between the nucleus and the cytoplasm.CrossRef | 1:CAS:528:DyaK1cXjsVeqsrc%3D&md5=7f99faeedc3a0fc2e616009dfeb2343cCAS |

Bag, J. (2001). Feedback inhibition of poly(A)-binding protein mRNA translation. A possible mechanism of translation arrest by stalled 40S ribosomal subunits. J. Biol. Chem. 276, 47 352–47 360.
Feedback inhibition of poly(A)-binding protein mRNA translation. A possible mechanism of translation arrest by stalled 40S ribosomal subunits.CrossRef | 1:CAS:528:DC%2BD3MXpt1Gms7k%3D&md5=d310bd062124a2975721da872ac38cc4CAS |

Barbosa, C., Peixeiro, I., and Romao, L. (2013). Gene expression regulation by upstream open reading frames and human disease. PLoS Genet. 9, e1003529.
Gene expression regulation by upstream open reading frames and human disease.CrossRef | 1:CAS:528:DC%2BC3sXhsVCku7zI&md5=ae9b676adfd8bf756ef50f93e420e808CAS |

Beaumont, H. M., and Smith, A. F. (1975). Embryonic mortality during the pre- and post-implantation periods of pregnancy in mature mice after superovulation. J. Reprod. Fertil. 45, 437–448.
Embryonic mortality during the pre- and post-implantation periods of pregnancy in mature mice after superovulation.CrossRef | 1:CAS:528:DyaE28XlsVGnsg%3D%3D&md5=fdc6fdf1509f5c7cf0867cfce9386aa8CAS |

Berlanga, J. J., Baass, A., and Sonenberg, N. (2006). Regulation of poly(A) binding protein function in translation: characterization of the Paip2 homolog, Paip2B. RNA 12, 1556–1568.
Regulation of poly(A) binding protein function in translation: characterization of the Paip2 homolog, Paip2B.CrossRef | 1:CAS:528:DC%2BD28XnslCmt7c%3D&md5=263b2774e65601ff4965f20ba31a334aCAS |

Bilger, A., Fox, C. A., Wahle, E., and Wickens, M. (1994). Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements. Genes Dev. 8, 1106–1116.
Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements.CrossRef | 1:CAS:528:DyaK2cXktVensr4%3D&md5=6c214244b8856fe7431df3a241994428CAS |

Blagden, S. P., Gatt, M. K., Archambault, V., Lada, K., Ichihara, K., Lilley, K. S., Inoue, Y. H., and Glover, D. M. (2009). Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syncytial embryo development. Dev. Biol. 334, 186–197.
Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syncytial embryo development.CrossRef | 1:CAS:528:DC%2BD1MXhtFamtrzK&md5=271cc3504050360d13b5c8302abfa86aCAS |

Blanco, P., Sargent, C. A., Boucher, C. A., Howell, G., Ross, M., and Affara, N. A. (2001). A novel poly(A)-binding protein gene (PABPC5) maps to an X-specific subinterval in the Xq21.3/Yp11.2 homology block of the human sex chromosomes. Genomics 74, 1–11.
A novel poly(A)-binding protein gene (PABPC5) maps to an X-specific subinterval in the Xq21.3/Yp11.2 homology block of the human sex chromosomes.CrossRef | 1:CAS:528:DC%2BD3MXjslKhur4%3D&md5=bd265e658dbdbc3fefaf77769ef702feCAS |

Blobel, G. (1973). A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs. Proc. Natl Acad. Sci. USA 70, 924–928.
A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs.CrossRef | 1:CAS:528:DyaE3sXhtlaku7o%3D&md5=ab537e04f3c91cbf48b7c0139a62f6adCAS |

Bollig, F., Winzen, R., Gaestel, M., Kostka, S., Resch, K., and Holtmann, H. (2003). Affinity purification of ARE-binding proteins identifies polyA-binding protein 1 as a potential substrate in MK2-induced mRNA stabilization. Biochem. Biophys. Res. Commun. 301, 665–670.
Affinity purification of ARE-binding proteins identifies polyA-binding protein 1 as a potential substrate in MK2-induced mRNA stabilization.CrossRef | 1:CAS:528:DC%2BD3sXotlyrtQ%3D%3D&md5=e5f7ecde00066636ed2cdb3d606d6663CAS |

Braude, P., Bolton, V., and Moore, S. (1988). Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332, 459–461.
Human gene expression first occurs between the four- and eight-cell stages of preimplantation development.CrossRef | 1:CAS:528:DyaL1cXhvVCiurk%3D&md5=be285ad711fe2c7fd4063f760e0834beCAS |

Brook, M., and Gray, N. K. (2012). The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover. Biochem. Soc. Trans. 40, 856–864.
The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover.CrossRef | 1:CAS:528:DC%2BC38XhtVOjt7rK&md5=10a2236717d6852727c6ce5577d23458CAS |

Burgess, H. M., and Gray, N. K. (2010). mRNA-specific regulation of translation by poly(A)-binding proteins. Biochem. Soc. Trans. 38, 1517–1522.
mRNA-specific regulation of translation by poly(A)-binding proteins.CrossRef | 1:CAS:528:DC%2BC3cXhsFSkurvL&md5=36b684297f9694d6c7acc3714d56f813CAS |

Burgess, H. M., Richardson, W. A., Anderson, R. C., Salaun, C., Graham, S. V., and Gray, N. K. (2011). Nuclear relocalisation of cytoplasmic poly(A)-binding proteins PABP1 and PABP4 in response to UV irradiation reveals mRNA-dependent export of metazoan PABPs. J. Cell Sci. 124, 3344–3355.
Nuclear relocalisation of cytoplasmic poly(A)-binding proteins PABP1 and PABP4 in response to UV irradiation reveals mRNA-dependent export of metazoan PABPs.CrossRef | 1:CAS:528:DC%2BC3MXhsVGqtLzI&md5=50974c9b7376d6a2e1d4e2b29465a42aCAS |

Cao, Q., and Richter, J. D. (2002). Dissolution of the maskin–eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J. 21, 3852–3862.
Dissolution of the maskin–eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation.CrossRef | 1:CAS:528:DC%2BD38XlslOkur0%3D&md5=fbf43fadb87a7bc642296b44e3a6b8edCAS |

Charlesworth, A., Cox, L. L., and MacNicol, A. M. (2004). Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes. J. Biol. Chem. 279, 17 650–17 659.
Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes.CrossRef | 1:CAS:528:DC%2BD2cXjt1Gntb0%3D&md5=33bbf645bbe2bee7d15a2494088bb9ccCAS |

Charlesworth, A., Meijer, H. A., and de Moor, C. H. (2013). Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip. Rev. RNA 4, 437–461.
Specificity factors in cytoplasmic polyadenylation.CrossRef | 1:CAS:528:DC%2BC3sXpslCgur4%3D&md5=035cae35fbc3b6f1dafc1c81d98a48ccCAS |

Chen, C. Y., and Shyu, A. B. (2011). Mechanisms of deadenylation-dependent decay. Wiley Interdiscip. Rev. RNA 2, 167–183.
Mechanisms of deadenylation-dependent decay.CrossRef | 1:CAS:528:DC%2BC3MXisVyltLs%3D&md5=049cd98996830f6978712c0a6f414832CAS |

Chen, J., Melton, C., Suh, N., Oh, J. S., Horner, K., Xie, F., Sette, C., Blelloch, R., and Conti, M. (2011). Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev. 25, 755–766.
Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition.CrossRef | 1:CAS:528:DC%2BC3MXkvFCrtbk%3D&md5=d48ce7296ebf5d70c0f9458efcbb7775CAS |

Coller, J. M., Gray, N. K., and Wickens, M. P. (1998). mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev. 12, 3226–3235.
mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation.CrossRef | 1:CAS:528:DyaK1cXnsVSntro%3D&md5=1e29505594077d95dbbb62ec75cb5cf0CAS |

Cosson, B., Braun, F., Paillard, L., Blackshear, P., and Beverley Osborne, H. (2004). Identification of a novel Xenopus laevis poly (A) binding protein. Biol. Cell 96, 519–527.
Identification of a novel Xenopus laevis poly (A) binding protein.CrossRef | 1:CAS:528:DC%2BD2cXnslGjurk%3D&md5=757decb8cd3331181f2fbf2b6b395103CAS |

de Melo Neto, O. P., Standart, N., and Martins de Sa, C. (1995). Autoregulation of poly(A)-binding protein synthesis in vitro. Nucleic Acids Res. 23, 2198–2205.
Autoregulation of poly(A)-binding protein synthesis in vitro.CrossRef | 1:CAS:528:DyaK2MXmvVGjtrs%3D&md5=226eb862ace85077b3c254179cf179f4CAS |

Deardorff, J. A., and Sachs, A. B. (1997). Differential effects of aromatic and charged residue substitutions in the RNA binding domains of the yeast poly(A)-binding protein. J. Mol. Biol. 269, 67–81.
Differential effects of aromatic and charged residue substitutions in the RNA binding domains of the yeast poly(A)-binding protein.CrossRef | 1:CAS:528:DyaK2sXktVKntr8%3D&md5=ba228fcecf7149966f9f103c72abc333CAS |

Derry, M. C., Yanagiya, A., Martineau, Y., and Sonenberg, N. (2006). Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb. Symp. Quant. Biol. 71, 537–543.
Regulation of poly(A)-binding protein through PABP-interacting proteins.CrossRef | 1:CAS:528:DC%2BD2sXls1yrtbY%3D&md5=29895f762c00b303e3d7b756e299615bCAS |

Drawbridge, J., Grainger, J. L., and Winkler, M. M. (1990). Identification and characterization of the poly(A)-binding proteins from the sea urchin: a quantitative analysis. Mol. Cell. Biol. 10, 3994–4006.
Identification and characterization of the poly(A)-binding proteins from the sea urchin: a quantitative analysis.CrossRef | 1:CAS:528:DyaK3cXltFWhsr8%3D&md5=be0b6ff4c2514594ff67a83d083dee5fCAS |

Ertzeid, G., and Storeng, R. (2001). The impact of ovarian stimulation on implantation and fetal development in mice. Hum. Reprod. 16, 221–225.
The impact of ovarian stimulation on implantation and fetal development in mice.CrossRef | 1:CAS:528:DC%2BD3MXhsFGrs70%3D&md5=343f61795014dd6ffcde8e2615c7aa85CAS |

Fabian, M. R., Mathonnet, G., Sundermeier, T., Mathys, H., Zipprich, J. T., Svitkin, Y. V., Rivas, F., Jinek, M., Wohlschlegel, J., Doudna, J. A., Chen, C. Y., Shyu, A. B., Yates, J. R., Hannon, G. J., Filipowicz, W., Duchaine, T. F., and Sonenberg, N. (2009). Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868–880.
Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation.CrossRef | 1:CAS:528:DC%2BD1MXhsVChsrzJ&md5=9f1cb684f58f32929700c003d803675eCAS |

Farley, B. M., and Ryder, S. P. (2008). Regulation of maternal mRNAs in early development. Crit. Rev. Biochem. Mol. Biol. 43, 135–162.
Regulation of maternal mRNAs in early development.CrossRef | 1:CAS:528:DC%2BD1cXjs12gsL8%3D&md5=0071bb4f563d791a1cdc5b1b864cc0fbCAS |

Féral, C., Guellaën, G., and Pawlak, A. (2001). Human testis expresses a specific poly(A)-binding protein. Nucleic Acids Res. 29, 1872–1883.
Human testis expresses a specific poly(A)-binding protein.CrossRef |

Ferby, I., Blazquez, M., Palmer, A., Eritja, R., and Nebreda, A. R. (1999). A novel p34(cdc2)-binding and activating protein that is necessary and sufficient to trigger G(2)/M progression in Xenopus oocytes. Genes Dev. 13, 2177–2189.
A novel p34(cdc2)-binding and activating protein that is necessary and sufficient to trigger G(2)/M progression in Xenopus oocytes.CrossRef | 1:CAS:528:DyaK1MXmtValsbg%3D&md5=b44ab92f97050b43230918fdf0489e58CAS |

Flach, G., Johnson, M. H., Braude, P. R., Taylor, R. A., and Bolton, V. N. (1982). The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J. 1, 681–686.
| 1:CAS:528:DyaL38XltVOrsL0%3D&md5=ed64180008d0c8c1f0d6d063d250fdbcCAS |

Ford, L. P., Bagga, P. S., and Wilusz, J. (1997). The poly(A) tail inhibits the assembly of a 3′-to-5′ exonuclease in an in vitro RNA stability system. Mol. Cell. Biol. 17, 398–406.
The poly(A) tail inhibits the assembly of a 3′-to-5′ exonuclease in an in vitro RNA stability system.CrossRef | 1:CAS:528:DyaK2sXhtlKntg%3D%3D&md5=7e49c951e130758fe3ab9f4decb2e7fdCAS |

Fortier, A. L., Lopes, F. L., Darricarrere, N., Martel, J., and Trasler, J. M. (2008). Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum. Mol. Genet. 17, 1653–1665.
Superovulation alters the expression of imprinted genes in the midgestation mouse placenta.CrossRef | 1:CAS:528:DC%2BD1cXmvFSrtL8%3D&md5=c8ae49620817a755901ec68161ae6fc4CAS |

Friend, K., Brook, M., Bezirci, F. B., Sheets, M. D., Gray, N. K., and Seli, E. (2012). Embryonic poly(A)-binding protein (ePAB) phosphorylation is required for Xenopus oocyte maturation. Biochem. J. 445, 93–100.
Embryonic poly(A)-binding protein (ePAB) phosphorylation is required for Xenopus oocyte maturation.CrossRef | 1:CAS:528:DC%2BC38XovVGnsLk%3D&md5=4d9a6847b60a76f32f3a2ab89d576783CAS |

Gallie, D. R., Le, H., Caldwell, C., Tanguay, R. L., Hoang, N. X., and Browning, K. S. (1997). The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J. Biol. Chem. 272, 1046–1053.
The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat.CrossRef | 1:CAS:528:DyaK2sXmtFGlsw%3D%3D&md5=816b46d82740b3d846617be5245b48f7CAS |

Gebauer, F., and Hentze, M. W. (2004). Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827–835.
Molecular mechanisms of translational control.CrossRef | 1:CAS:528:DC%2BD2cXotVSlsrw%3D&md5=49782eea111264210c7fa3fba1511c0eCAS |

Gebauer, F., Xu, W., Cooper, G. M., and Richter, J. D. (1994). Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J. 13, 5712–5720.
| 1:CAS:528:DyaK2MXislGqsLs%3D&md5=542fcfdfb681c8500ab834440e5ddc7bCAS |

Good, P. J., Abler, L., Herring, D., and Sheets, M. D. (2004). Xenopus embryonic poly(A) binding protein 2 (ePABP2) defines a new family of cytoplasmic poly(A) binding proteins expressed during the early stages of vertebrate development. Genesis 38, 166–175.
Xenopus embryonic poly(A) binding protein 2 (ePABP2) defines a new family of cytoplasmic poly(A) binding proteins expressed during the early stages of vertebrate development.CrossRef | 1:CAS:528:DC%2BD2cXkslOks7Y%3D&md5=7a65978a2742a836e6be5392c2ff0dd2CAS |

Gorgoni, B., and Gray, N. K. (2004). The roles of cytoplasmic poly(A)-binding proteins in regulating gene expression: a developmental perspective. Brief. Funct. Genomic Proteomic 3, 125–141.
The roles of cytoplasmic poly(A)-binding proteins in regulating gene expression: a developmental perspective.CrossRef | 1:CAS:528:DC%2BD2cXosVWjtrk%3D&md5=7cdb2ce25ec7f1392df945e890e4869fCAS |

Gorgoni, B., Richardson, W. A., Burgess, H. M., Anderson, R. C., Wilkie, G. S., Gautier, P., Martins, J. P., Brook, M., Sheets, M. D., and Gray, N. K. (2011). Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development. Proc. Natl Acad. Sci. USA 108, 7844–7849.
Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development.CrossRef | 1:CAS:528:DC%2BC3MXmsVSktLg%3D&md5=4ef693bcdcb062ab053d8e6524a4c3eeCAS |

Görlach, M., Burd, C. G., and Dreyfuss, G. (1994). The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp. Cell Res. 211, 400–407.
The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity.CrossRef |

Gray, N. K., Coller, J. M., Dickson, K. S., and Wickens, M. (2000). Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J. 19, 4723–4733.
Multiple portions of poly(A)-binding protein stimulate translation in vivo.CrossRef | 1:CAS:528:DC%2BD3cXmslGrsr0%3D&md5=b3accb514b1b8efda57ae3ca0c4ec4bdCAS |

Groisman, I., Huang, Y. S., Mendez, R., Cao, Q., Theurkauf, W., and Richter, J. D. (2000). CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 103, 435–447.
CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division.CrossRef | 1:CAS:528:DC%2BD3cXnvF2ks7Y%3D&md5=3237c39f6544a995d1c8c348db013bc6CAS |

Guzeloglu-Kayisli, O., Pauli, S., Demir, H., Lalioti, M. D., Sakkas, D., and Seli, E. (2008). Identification and characterization of human embryonic poly(A) binding protein (EPAB). Mol. Hum. Reprod. 14, 581–588.
Identification and characterization of human embryonic poly(A) binding protein (EPAB).CrossRef | 1:CAS:528:DC%2BD1MXltV2jtQ%3D%3D&md5=a9060c9495353dfb157cacc5a2c9b90fCAS |

Guzeloglu-Kayisli, O., Lalioti, M. D., Aydiner, F., Sasson, I., Ilbay, O., Sakkas, D., Lowther, K. M., Mehlmann, L. M., and Seli, E. (2012). Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice. Biochem. J. 446, 47–58.
Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice.CrossRef | 1:CAS:528:DC%2BC38XhtFShsL%2FI&md5=5c286d598f6e367cc8c74b81174a320aCAS |

Houng, A. K., Maggini, L., Clement, C. Y., and Reed, G. L. (1997). Identification and structure of activated-platelet protein-1, a protein with RNA-binding domain motifs that is expressed by activated platelets. Eur. J. Biochem. 243, 209–218.
Identification and structure of activated-platelet protein-1, a protein with RNA-binding domain motifs that is expressed by activated platelets.CrossRef | 1:CAS:528:DyaK2sXhtVWit7g%3D&md5=b8340f08b4b6cb97a612159bb64aeb47CAS |

Keady, B. T., Kuo, P., Martinez, S. E., Yuan, L., and Hake, L. E. (2007). MAPK interacts with XGef and is required for CPEB activation during meiosis in Xenopus oocytes. J. Cell Sci. 120, 1093–1103.
MAPK interacts with XGef and is required for CPEB activation during meiosis in Xenopus oocytes.CrossRef | 1:CAS:528:DC%2BD2sXkvVWjtr8%3D&md5=daaeeac3b57b3e1457b1fb5e31e8ff8fCAS |

Khaleghpour, K., Svitkin, Y. V., Craig, A. W., DeMaria, C. T., Deo, R. C., Burley, S. K., and Sonenberg, N. (2001). Translational repression by a novel partner of human poly(A) binding protein, Paip2. Mol. Cell 7, 205–216.
Translational repression by a novel partner of human poly(A) binding protein, Paip2.CrossRef | 1:CAS:528:DC%2BD3MXis1Kitrw%3D&md5=3773e835a4e861ce91ebd6078ac1758cCAS |

Kim, J. H., and Richter, J. D. (2007). RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB. Genes Dev. 21, 2571–2579.
RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB.CrossRef | 1:CAS:528:DC%2BD2sXht1WnsbjI&md5=81188a4db1d21c7a0292cd7394034363CAS |

Kimura, M., Ishida, K., Kashiwabara, S., and Baba, T. (2009). Characterization of two cytoplasmic poly(A)-binding proteins, PABPC1 and PABPC2, in mouse spermatogenic cells. Biol. Reprod. 80, 545–554.
Characterization of two cytoplasmic poly(A)-binding proteins, PABPC1 and PABPC2, in mouse spermatogenic cells.CrossRef | 1:CAS:528:DC%2BD1MXis1amtb0%3D&md5=bab92959b209b2961b914208abc7adbbCAS |

Kini, H. K., Vishnu, M. R., and Liebhaber, S. A. (2010). Too much PABP, too little translation. J. Clin. Invest. 120, 3090–3093.
Too much PABP, too little translation.CrossRef | 1:CAS:528:DC%2BC3cXhtFertb3N&md5=d65c7e544120ad99b8a7171c4f1eea95CAS |

Kleene, K. C., Wang, M. Y., Cutler, M., Hall, C., and Shih, D. (1994). Developmental expression of poly(A) binding protein mRNAs during spermatogenesis in the mouse. Mol. Reprod. Dev. 39, 355–364.
Developmental expression of poly(A) binding protein mRNAs during spermatogenesis in the mouse.CrossRef | 1:CAS:528:DyaK2MXisFWjtrw%3D&md5=20396f1cb07a1ccea32c786b73ef8a3dCAS |

Kleene, K. C., Mulligan, E., Steiger, D., Donohue, K., and Mastrangelo, M. A. (1998). The mouse gene encoding the testis-specific isoform of Poly(A) binding protein (Pabp2) is an expressed retroposon: intimations that gene expression in spermatogenic cells facilitates the creation of new genes. J. Mol. Evol. 47, 275–281.
The mouse gene encoding the testis-specific isoform of Poly(A) binding protein (Pabp2) is an expressed retroposon: intimations that gene expression in spermatogenic cells facilitates the creation of new genes.CrossRef | 1:CAS:528:DyaK1cXmt1ansb8%3D&md5=5801db9326319d467041500f1bff8593CAS |

Ko, S., Park, J. H., Lee, A. R., Kim, E., Jiyoung, K., Kawasaki, I., and Shim, Y. H. (2010). Two mutations in pab-1 encoding poly(A)-binding protein show similar defects in germline stem cell proliferation but different longevity in C. elegans. Mol. Cells 30, 167–172.
Two mutations in pab-1 encoding poly(A)-binding protein show similar defects in germline stem cell proliferation but different longevity in C. elegans.CrossRef | 1:CAS:528:DC%2BC3cXhtVOmtrbP&md5=cc4bb733c85b3d983d284b897436689aCAS |

Körner, C. G., Wormington, M., Muckenthaler, M., Schneider, S., Dehlin, E., and Wahle, E. (1998). The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J. 17, 5427–5437.
The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes.CrossRef |

Kozlov, G., Trempe, J. F., Khaleghpour, K., Kahvejian, A., Ekiel, I., and Gehring, K. (2001). Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. Proc. Natl Acad. Sci. USA 98, 4409–4413.
Structure and function of the C-terminal PABC domain of human poly(A)-binding protein.CrossRef | 1:CAS:528:DC%2BD3MXjtVagtrw%3D&md5=5f90921ae58209ba770ab794fafa8d71CAS |

Kozlov, G., De Crescenzo, G., Lim, N. S., Siddiqui, N., Fantus, D., Kahvejian, A., Trempe, J. F., Elias, D., Ekiel, I., Sonenberg, N., O’Connor-McCourt, M., and Gehring, K. (2004). Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase. EMBO J. 23, 272–281.
Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase.CrossRef | 1:CAS:528:DC%2BD2cXhtVeqsb0%3D&md5=c628a470b585da5721b5334333031b97CAS |

Kozlov, G., Menade, M., Rosenauer, A., Nguyen, L., and Gehring, K. (2010). Molecular determinants of PAM2 recognition by the MLLE domain of poly(A)-binding protein. J. Mol. Biol. 397, 397–407.
Molecular determinants of PAM2 recognition by the MLLE domain of poly(A)-binding protein.CrossRef | 1:CAS:528:DC%2BC3cXivFGqsLY%3D&md5=81fb4d7613d00e90ffa4fe2cf5bfc5eaCAS |

Kühn, U., and Pieler, T. (1996). Xenopus poly(A) binding protein: functional domains in RNA binding and protein–protein interaction. J. Mol. Biol. 256, 20–30.
Xenopus poly(A) binding protein: functional domains in RNA binding and protein–protein interaction.CrossRef |

Kühn, U., and Wahle, E. (2004). Structure and function of poly(A) binding proteins. Biochim. Biophys. Acta 1678, 67–84.
Structure and function of poly(A) binding proteins.CrossRef |

Lowther, K. M., and Mehlmann, L. M. (2015). Embryonic poly(A)-binding protein is required during early stages of mouse oocyte development for chromatin organization, transcriptional silencing, and meiotic competence. Biol. Reprod. 93, 43.
Embryonic poly(A)-binding protein is required during early stages of mouse oocyte development for chromatin organization, transcriptional silencing, and meiotic competence.CrossRef |

Mangus, D. A., Evans, M. C., and Jacobson, A. (2003). Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 4, 223.
Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression.CrossRef |

Martineau, Y., Derry, M. C., Wang, X., Yanagiya, A., Berlanga, J. J., Shyu, A. B., Imataka, H., Gehring, K., and Sonenberg, N. (2008). Poly(A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation. Mol. Cell. Biol. 28, 6658–6667.
Poly(A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation.CrossRef | 1:CAS:528:DC%2BD1cXhtlWiu7bF&md5=313ff23a1cdd19eca22c125eb4c0141aCAS |

Matova, N., and Cooley, L. (2001). Comparative aspects of animal oogenesis. Dev. Biol. 231, 291–320.
Comparative aspects of animal oogenesis.CrossRef | 1:CAS:528:DC%2BD3MXhsFOhtrc%3D&md5=1fc4f24a0df24e48225ac433f69c3de6CAS |

Melo, E. O., Dhalia, R., Martins de Sa, C., Standart, N., and de Melo Neto, O. P. (2003). Identification of a C-terminal poly(A)-binding protein (PABP)–PABP interaction domain: role in cooperative binding to poly(A) and efficient cap distal translational repression. J. Biol. Chem. 278, 46 357–46 368.
Identification of a C-terminal poly(A)-binding protein (PABP)–PABP interaction domain: role in cooperative binding to poly(A) and efficient cap distal translational repression.CrossRef | 1:CAS:528:DC%2BD3sXovFKltb4%3D&md5=79928f558aeb251f72379ab909c29717CAS |

Mendez, R., Hake, L. E., Andresson, T., Littlepage, L. E., Ruderman, J. V., and Richter, J. D. (2000). Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307.
Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA.CrossRef | 1:CAS:528:DC%2BD3cXit1ansLY%3D&md5=5c74d8950398e0da35a394aac426e6f2CAS |

Miskimins, W. K., Wang, G., Hawkinson, M., and Miskimins, R. (2001). Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation. Mol. Cell. Biol. 21, 4960–4967.
Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation.CrossRef | 1:CAS:528:DC%2BD3MXlsVGit7o%3D&md5=d7483e85442a71534c9f514e81f62655CAS |

Mühlemann, O. (2008). Recognition of nonsense mRNA: towards a unified model. Biochem. Soc. Trans. 36, 497–501.
Recognition of nonsense mRNA: towards a unified model.CrossRef |

Oktem, O., and Urman, B. (2010). Understanding follicle growth in vivo. Hum. Reprod. 25, 2944–2954.
Understanding follicle growth in vivo.CrossRef |

Ozturk, S., Guzeloglu-Kayisli, O., Demir, N., Sozen, B., Ilbay, O., Lalioti, M. D., and Seli, E. (2012). Epab and Pabpc1 are differentially expressed during male germ cell development. Reprod. Sci. 19, 911–922.
Epab and Pabpc1 are differentially expressed during male germ cell development.CrossRef |

Ozturk, S., Sozen, B., and Demir, N. (2015). Epab and Pabpc1 are differentially expressed in the postnatal mouse ovaries. J. Assist. Reprod. Genet. 32, 137–146.
Epab and Pabpc1 are differentially expressed in the postnatal mouse ovaries.CrossRef |

Ozturk, S., Yaba-Ucar, A., Sozen, B., Mutlu, D., and Demir, N. (2016). Superovulation alters embryonic poly(A)-binding protein (Epab) and poly(A)-binding protein, cytoplasmic 1 (Pabpc1) gene expression in mouse oocytes and early embryos. Reprod. Fertil. Dev. 28, 375–383.
Superovulation alters embryonic poly(A)-binding protein (Epab) and poly(A)-binding protein, cytoplasmic 1 (Pabpc1) gene expression in mouse oocytes and early embryos.CrossRef | 1:CAS:528:DC%2BC28XhtFOjsbY%3D&md5=bb5caa7247e2f7b42aa4541416a56e0dCAS |

Padmanabhan, K., and Richter, J. D. (2006). Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation. Genes Dev. 20, 199–209.
Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation.CrossRef | 1:CAS:528:DC%2BD28XptlKjug%3D%3D&md5=8d8b3ed27206c4004b44d528d46442a2CAS |

Page, A. W., and Orr-Weaver, T. L. (1997). Stopping and starting the meiotic cell cycle. Curr. Opin. Genet. Dev. 7, 23–31.
Stopping and starting the meiotic cell cycle.CrossRef | 1:CAS:528:DyaK2sXhsVeisrc%3D&md5=e61b7e10710a61f22cc290a008e46ba4CAS |

Patel, G. P., Ma, S., and Bag, J. (2005). The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res. 33, 7074–7089.
The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex.CrossRef | 1:CAS:528:DC%2BD28XisFKqtg%3D%3D&md5=83eb2d8ff39f57011e9850491b6a8378CAS |

Piccioni, F., Zappavigna, V., and Verrotti, A. C. (2005). Translational regulation during oogenesis and early development: the cap-poly(A) tail relationship. C. R. Biol. 328, 863–881.
Translational regulation during oogenesis and early development: the cap-poly(A) tail relationship.CrossRef | 1:CAS:528:DC%2BD2MXht1Sru7zM&md5=81e60577a80dcf63407e573f60c24f7bCAS |

Racki, W. J., and Richter, J. D. (2006). CPEB controls oocyte growth and follicle development in the mouse. Development 133, 4527–4537.
CPEB controls oocyte growth and follicle development in the mouse.CrossRef | 1:CAS:528:DC%2BD2sXjs1Wl&md5=3fbde4b6b625880b016fdb57b45af858CAS |

Richter, J. D. (2007). CPEB: a life in translation. Trends Biochem. Sci. 32, 279–285.
CPEB: a life in translation.CrossRef | 1:CAS:528:DC%2BD2sXmtlahsbw%3D&md5=a193fbce4d932a1ee7d4672c50e92e61CAS |

Roy, G., De Crescenzo, G., Khaleghpour, K., Kahvejian, A., O’Connor-McCourt, M., and Sonenberg, N. (2002). Paip1 interacts with poly(A) binding protein through two independent binding motifs. Mol. Cell. Biol. 22, 3769–3782.
Paip1 interacts with poly(A) binding protein through two independent binding motifs.CrossRef | 1:CAS:528:DC%2BD38XjslWltrk%3D&md5=2f1e6a5ec640123cc7759ff205fafd8cCAS |

Sachs, A. B., Davis, R. W., and Kornberg, R. D. (1987). A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol. Cell. Biol. 7, 3268–3276.
A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability.CrossRef | 1:CAS:528:DyaL1cXit1yl&md5=b80b2959ff4778b51d8d242bd4a6c049CAS |

Sakugawa, N., Miyamoto, T., Sato, H., Ishikawa, M., Horikawa, M., Hayashi, H., and Sengoku, K. (2008). Isolation of the human ePAB and ePABP2 cDNAs and analysis of the expression patterns. J. Assist. Reprod. Genet. 25, 215–221.
Isolation of the human ePAB and ePABP2 cDNAs and analysis of the expression patterns.CrossRef | 1:STN:280:DC%2BD1czksVSjug%3D%3D&md5=ad8c8248e40a4c64d9282e92e7622c9dCAS |

Seli, E., Lalioti, M. D., Flaherty, S. M., Sakkas, D., Terzi, N., and Steitz, J. A. (2005). An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc. Natl Acad. Sci. USA 102, 367–372.
An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos.CrossRef | 1:CAS:528:DC%2BD2MXptFSksw%3D%3D&md5=7380713b559c8de014c8f58c4652ef5dCAS |

Siddiqui, N., Mangus, D. A., Chang, T. C., Palermino, J. M., Shyu, A. B., and Gehring, K. (2007). Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein. J. Biol. Chem. 282, 25 067–25 075.
Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein.CrossRef | 1:CAS:528:DC%2BD2sXpt1SltLs%3D&md5=2fe538250c7503860344b1f37ef22293CAS |

Smith, R. W., Blee, T. K., and Gray, N. K. (2014). Poly(A)-binding proteins are required for diverse biological processes in metazoans. Biochem. Soc. Trans. 42, 1229–1237.
Poly(A)-binding proteins are required for diverse biological processes in metazoans.CrossRef | 1:CAS:528:DC%2BC2cXhtlWktLfP&md5=9ed418fc90534f850186364c15f4e1ecCAS |

Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R., and Richter, J. D. (1999). Maskin is a CPEB-associated factor that transiently interacts with elF–4E. Mol. Cell 4, 1017–1027.
Maskin is a CPEB-associated factor that transiently interacts with elF–4E.CrossRef | 1:CAS:528:DC%2BD3cXislaqsg%3D%3D&md5=7fc6b83d419d2089e9c0af7f3e553b2dCAS |

Thakurta, A. G., Ho Yoon, J., and Dhar, R. (2002). Schizosaccharomyces pombe spPABP, a homologue of Saccharomyces cerevisiae Pab1p, is a non-essential, shuttling protein that facilitates mRNA export. Yeast 19, 803–810.
Schizosaccharomyces pombe spPABP, a homologue of Saccharomyces cerevisiae Pab1p, is a non-essential, shuttling protein that facilitates mRNA export.CrossRef |

Tian, B., and Graber, J. H. (2012). Signals for pre-mRNA cleavage and polyadenylation. Wiley Interdiscip. Rev. RNA 3, 385–396.
Signals for pre-mRNA cleavage and polyadenylation.CrossRef | 1:CAS:528:DC%2BC38XovVyktbw%3D&md5=1f0135146ad639b17641b011b97b5241CAS |

Tourrière, H., Chebli, K., and Tazi, J. (2002). mRNA degradation machines in eukaryotic cells. Biochimie 84, 821–837.
mRNA degradation machines in eukaryotic cells.CrossRef |

Voeltz, G. K., Ongkasuwan, J., Standart, N., and Steitz, J. A. (2001). A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev. 15, 774–788.
A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts.CrossRef | 1:CAS:528:DC%2BD3MXisFSku7s%3D&md5=abcdf13b3965c7dd5c23b14f6f7ef920CAS |

Wahle, E. (1991). A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell 66, 759–768.
A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation.CrossRef | 1:CAS:528:DyaK3MXmt1Khu78%3D&md5=27a19924e88a4ffa92505c30acfad28dCAS |

Wahle, E., Lustig, A., Jeno, P., and Maurer, P. (1993). Mammalian poly(A)-binding protein II. Physical properties and binding to polynucleotides. J. Biol. Chem. 268, 2937–2945.
| 1:CAS:528:DyaK3sXhvVKiu78%3D&md5=aa530cc5b2121ce038cac5e252564e17CAS |

Wang, Z., Parisien, M., Scheets, K., and Miller, W. A. (2011). The cap-binding translation initiation factor, eIF4E, binds a pseudoknot in a viral cap-independent translation element. Structure 19, 868–880.
The cap-binding translation initiation factor, eIF4E, binds a pseudoknot in a viral cap-independent translation element.CrossRef | 1:CAS:528:DC%2BC3MXntFGnsrY%3D&md5=33660cb12f41c9888bc57ab15cd32341CAS |

Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. (1998). Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135–140.
Circularization of mRNA by eukaryotic translation initiation factors.CrossRef | 1:CAS:528:DyaK1cXltVCjtLo%3D&md5=4efafd49a78d575336cbd2cd621e0b9aCAS |

Wilkie, G. S., Gautier, P., Lawson, D., and Gray, N. K. (2005). Embryonic poly(A)-binding protein stimulates translation in germ cells. Mol. Cell. Biol. 25, 2060–2071.
Embryonic poly(A)-binding protein stimulates translation in germ cells.CrossRef | 1:CAS:528:DC%2BD2MXhvFGqtbo%3D&md5=e823681a663486ddc5290d947c1f1336CAS |

Wormington, M., Searfoss, A. M., and Hurney, C. A. (1996). Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation in Xenopus oocytes. EMBO J. 15, 900–909.
| 1:CAS:528:DyaK28XhsFGgtLk%3D&md5=1c267c28589c50164cc0e95c577cf8c4CAS |

Wu, J., and Bag, J. (1998). Negative control of the poly(A)-binding protein mRNA translation is mediated by the adenine-rich region of its 5′-untranslated region. J. Biol. Chem. 273, 34 535–34 542.
Negative control of the poly(A)-binding protein mRNA translation is mediated by the adenine-rich region of its 5′-untranslated region.CrossRef | 1:CAS:528:DyaK1MXntlCg&md5=ccadea8b7fc9232e4ca0c6034b8b9cfcCAS |

Yanagiya, A., Delbes, G., Svitkin, Y. V., Robaire, B., and Sonenberg, N. (2010). The poly(A)-binding protein partner Paip2a controls translation during late spermiogenesis in mice. J. Clin. Invest. 120, 3389–3400.
The poly(A)-binding protein partner Paip2a controls translation during late spermiogenesis in mice.CrossRef | 1:CAS:528:DC%2BC3cXhtFertbvF&md5=a8827dd279548076a0424148db09f4d1CAS |

Yang, H., Duckett, C. S., and Lindsten, T. (1995). iPABP, an inducible poly(A)-binding protein detected in activated human T cells. Mol. Cell. Biol. 15, 6770–6776.
iPABP, an inducible poly(A)-binding protein detected in activated human T cells.CrossRef | 1:CAS:528:DyaK2MXpsFKqtbY%3D&md5=366db0a07f9688de71437d79a2b4678cCAS |

Yang, C. R., Lowther, K. M., Lalioti, M. D., and Seli, E. (2016). Embryonic poly(A)-binding protein (EPAB) is required for granulosa cell EGF signaling and cumulus expansion in female mice. Endocrinology 157, 405–416.
Embryonic poly(A)-binding protein (EPAB) is required for granulosa cell EGF signaling and cumulus expansion in female mice.CrossRef | 1:CAS:528:DC%2BC28XksFagtL8%3D&md5=2d03d92a3d90aa503b3e0ae88e52a1b3CAS |

Zekri, L., Huntzinger, E., Heimstadt, S., and Izaurralde, E. (2009). The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol. Cell. Biol. 29, 6220–6231.
The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release.CrossRef | 1:CAS:528:DC%2BD1MXhsV2ltLfN&md5=d9ca7d5f3789ec9d3626686f4927cab9CAS |

Zelus, B. D., Giebelhaus, D. H., Eib, D. W., Kenner, K. A., and Moon, R. T. (1989). Expression of the poly(A)-binding protein during development of Xenopus laevis. Mol. Cell. Biol. 9, 2756–2760.
Expression of the poly(A)-binding protein during development of Xenopus laevis.CrossRef | 1:CAS:528:DyaK3cXkvFOjsw%3D%3D&md5=c22c06590dbad1c60213a8fb706e786eCAS |



Rent Article (via Deepdyve) Export Citation