Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Poly(A)-binding proteins are required for translational regulation in vertebrate oocytes and early embryos

Saffet Ozturk A B and Fatma Uysal A

A Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey.

B Corresponding author. Email: sozturk@akdeniz.edu.tr

Reproduction, Fertility and Development - https://doi.org/10.1071/RD16283
Submitted: 20 July 2016  Accepted: 1 December 2016   Published online: 20 January 2017

Abstract

Poly(A)-binding proteins (PABPs) function in the timely regulation of gene expression during oocyte maturation, fertilisation and early embryo development in vertebrates. To this end, PABPs bind to poly(A) tails or specific sequences of maternally stored mRNAs to protect them from degradation and to promote their translational activities. To date, two structurally different PABP groups have been identified: (1) cytoplasmic PABPs, including poly(A)-binding protein, cytoplasmic 1 (PABPC1), embryonic poly(A)-binding protein (EPAB), induced PABP and poly(A)-binding protein, cytoplasmic 3; and (2) nuclear PABPs, namely embryonic poly(A)-binding protein 2 and nuclear poly(A)-binding protein 1. Many studies have been undertaken to characterise the spatial and temporal expression patterns and subcellular localisations of PABPC1 and EPAB in vertebrate oocytes and early embryos. In the present review, we comprehensively evaluate and discuss the expression patterns and particular functions of the EPAB and PABPC1 genes, especially in mouse and human oocytes and early embryos.

Additional keywords: embryonic poly(A)-binding protein (EPAB), poly(A)-binding protein, cytoplasmic 1 (PABPC1), translation.


References

Adam, S. A., Nakagawa, T., Swanson, M. S., Woodruff, T. K., and Dreyfuss, G. (1986). mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence. Mol. Cell. Biol. 6, 2932–2943.
mRNA polyadenylate-binding protein: gene isolation and sequencing and identification of a ribonucleoprotein consensus sequence.CrossRef | 1:CAS:528:DyaL28Xlt1ylt7k%3D&md5=472c44ea40183ec494cf2f0b2a902d28CAS | open url image1

Afonina, E., Stauber, R., and Pavlakis, G. N. (1998). The human poly(A)-binding protein 1 shuttles between the nucleus and the cytoplasm. J. Biol. Chem. 273, 13 015–13 021.
The human poly(A)-binding protein 1 shuttles between the nucleus and the cytoplasm.CrossRef | 1:CAS:528:DyaK1cXjsVeqsrc%3D&md5=7f99faeedc3a0fc2e616009dfeb2343cCAS | open url image1

Bag, J. (2001). Feedback inhibition of poly(A)-binding protein mRNA translation. A possible mechanism of translation arrest by stalled 40S ribosomal subunits. J. Biol. Chem. 276, 47 352–47 360.
Feedback inhibition of poly(A)-binding protein mRNA translation. A possible mechanism of translation arrest by stalled 40S ribosomal subunits.CrossRef | 1:CAS:528:DC%2BD3MXpt1Gms7k%3D&md5=d310bd062124a2975721da872ac38cc4CAS | open url image1

Barbosa, C., Peixeiro, I., and Romao, L. (2013). Gene expression regulation by upstream open reading frames and human disease. PLoS Genet. 9, e1003529.
Gene expression regulation by upstream open reading frames and human disease.CrossRef | 1:CAS:528:DC%2BC3sXhsVCku7zI&md5=ae9b676adfd8bf756ef50f93e420e808CAS | open url image1

Beaumont, H. M., and Smith, A. F. (1975). Embryonic mortality during the pre- and post-implantation periods of pregnancy in mature mice after superovulation. J. Reprod. Fertil. 45, 437–448.
Embryonic mortality during the pre- and post-implantation periods of pregnancy in mature mice after superovulation.CrossRef | 1:CAS:528:DyaE28XlsVGnsg%3D%3D&md5=fdc6fdf1509f5c7cf0867cfce9386aa8CAS | open url image1

Berlanga, J. J., Baass, A., and Sonenberg, N. (2006). Regulation of poly(A) binding protein function in translation: characterization of the Paip2 homolog, Paip2B. RNA 12, 1556–1568.
Regulation of poly(A) binding protein function in translation: characterization of the Paip2 homolog, Paip2B.CrossRef | 1:CAS:528:DC%2BD28XnslCmt7c%3D&md5=263b2774e65601ff4965f20ba31a334aCAS | open url image1

Bilger, A., Fox, C. A., Wahle, E., and Wickens, M. (1994). Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements. Genes Dev. 8, 1106–1116.
Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements.CrossRef | 1:CAS:528:DyaK2cXktVensr4%3D&md5=6c214244b8856fe7431df3a241994428CAS | open url image1

Blagden, S. P., Gatt, M. K., Archambault, V., Lada, K., Ichihara, K., Lilley, K. S., Inoue, Y. H., and Glover, D. M. (2009). Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syncytial embryo development. Dev. Biol. 334, 186–197.
Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syncytial embryo development.CrossRef | 1:CAS:528:DC%2BD1MXhtFamtrzK&md5=271cc3504050360d13b5c8302abfa86aCAS | open url image1

Blanco, P., Sargent, C. A., Boucher, C. A., Howell, G., Ross, M., and Affara, N. A. (2001). A novel poly(A)-binding protein gene (PABPC5) maps to an X-specific subinterval in the Xq21.3/Yp11.2 homology block of the human sex chromosomes. Genomics 74, 1–11.
A novel poly(A)-binding protein gene (PABPC5) maps to an X-specific subinterval in the Xq21.3/Yp11.2 homology block of the human sex chromosomes.CrossRef | 1:CAS:528:DC%2BD3MXjslKhur4%3D&md5=bd265e658dbdbc3fefaf77769ef702feCAS | open url image1

Blobel, G. (1973). A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs. Proc. Natl Acad. Sci. USA 70, 924–928.
A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs.CrossRef | 1:CAS:528:DyaE3sXhtlaku7o%3D&md5=ab537e04f3c91cbf48b7c0139a62f6adCAS | open url image1

Bollig, F., Winzen, R., Gaestel, M., Kostka, S., Resch, K., and Holtmann, H. (2003). Affinity purification of ARE-binding proteins identifies polyA-binding protein 1 as a potential substrate in MK2-induced mRNA stabilization. Biochem. Biophys. Res. Commun. 301, 665–670.
Affinity purification of ARE-binding proteins identifies polyA-binding protein 1 as a potential substrate in MK2-induced mRNA stabilization.CrossRef | 1:CAS:528:DC%2BD3sXotlyrtQ%3D%3D&md5=e5f7ecde00066636ed2cdb3d606d6663CAS | open url image1

Braude, P., Bolton, V., and Moore, S. (1988). Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332, 459–461.
Human gene expression first occurs between the four- and eight-cell stages of preimplantation development.CrossRef | 1:CAS:528:DyaL1cXhvVCiurk%3D&md5=be285ad711fe2c7fd4063f760e0834beCAS | open url image1

Brook, M., and Gray, N. K. (2012). The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover. Biochem. Soc. Trans. 40, 856–864.
The role of mammalian poly(A)-binding proteins in co-ordinating mRNA turnover.CrossRef | 1:CAS:528:DC%2BC38XhtVOjt7rK&md5=10a2236717d6852727c6ce5577d23458CAS | open url image1

Burgess, H. M., and Gray, N. K. (2010). mRNA-specific regulation of translation by poly(A)-binding proteins. Biochem. Soc. Trans. 38, 1517–1522.
mRNA-specific regulation of translation by poly(A)-binding proteins.CrossRef | 1:CAS:528:DC%2BC3cXhsFSkurvL&md5=36b684297f9694d6c7acc3714d56f813CAS | open url image1

Burgess, H. M., Richardson, W. A., Anderson, R. C., Salaun, C., Graham, S. V., and Gray, N. K. (2011). Nuclear relocalisation of cytoplasmic poly(A)-binding proteins PABP1 and PABP4 in response to UV irradiation reveals mRNA-dependent export of metazoan PABPs. J. Cell Sci. 124, 3344–3355.
Nuclear relocalisation of cytoplasmic poly(A)-binding proteins PABP1 and PABP4 in response to UV irradiation reveals mRNA-dependent export of metazoan PABPs.CrossRef | 1:CAS:528:DC%2BC3MXhsVGqtLzI&md5=50974c9b7376d6a2e1d4e2b29465a42aCAS | open url image1

Cao, Q., and Richter, J. D. (2002). Dissolution of the maskin–eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J. 21, 3852–3862.
Dissolution of the maskin–eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation.CrossRef | 1:CAS:528:DC%2BD38XlslOkur0%3D&md5=fbf43fadb87a7bc642296b44e3a6b8edCAS | open url image1

Charlesworth, A., Cox, L. L., and MacNicol, A. M. (2004). Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes. J. Biol. Chem. 279, 17 650–17 659.
Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes.CrossRef | 1:CAS:528:DC%2BD2cXjt1Gntb0%3D&md5=33bbf645bbe2bee7d15a2494088bb9ccCAS | open url image1

Charlesworth, A., Meijer, H. A., and de Moor, C. H. (2013). Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip. Rev. RNA 4, 437–461.
Specificity factors in cytoplasmic polyadenylation.CrossRef | 1:CAS:528:DC%2BC3sXpslCgur4%3D&md5=035cae35fbc3b6f1dafc1c81d98a48ccCAS | open url image1

Chen, C. Y., and Shyu, A. B. (2011). Mechanisms of deadenylation-dependent decay. Wiley Interdiscip. Rev. RNA 2, 167–183.
Mechanisms of deadenylation-dependent decay.CrossRef | 1:CAS:528:DC%2BC3MXisVyltLs%3D&md5=049cd98996830f6978712c0a6f414832CAS | open url image1

Chen, J., Melton, C., Suh, N., Oh, J. S., Horner, K., Xie, F., Sette, C., Blelloch, R., and Conti, M. (2011). Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition. Genes Dev. 25, 755–766.
Genome-wide analysis of translation reveals a critical role for deleted in azoospermia-like (Dazl) at the oocyte-to-zygote transition.CrossRef | 1:CAS:528:DC%2BC3MXkvFCrtbk%3D&md5=d48ce7296ebf5d70c0f9458efcbb7775CAS | open url image1

Coller, J. M., Gray, N. K., and Wickens, M. P. (1998). mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev. 12, 3226–3235.
mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation.CrossRef | 1:CAS:528:DyaK1cXnsVSntro%3D&md5=1e29505594077d95dbbb62ec75cb5cf0CAS | open url image1

Cosson, B., Braun, F., Paillard, L., Blackshear, P., and Beverley Osborne, H. (2004). Identification of a novel Xenopus laevis poly (A) binding protein. Biol. Cell 96, 519–527.
Identification of a novel Xenopus laevis poly (A) binding protein.CrossRef | 1:CAS:528:DC%2BD2cXnslGjurk%3D&md5=757decb8cd3331181f2fbf2b6b395103CAS | open url image1

de Melo Neto, O. P., Standart, N., and Martins de Sa, C. (1995). Autoregulation of poly(A)-binding protein synthesis in vitro. Nucleic Acids Res. 23, 2198–2205.
Autoregulation of poly(A)-binding protein synthesis in vitro.CrossRef | 1:CAS:528:DyaK2MXmvVGjtrs%3D&md5=226eb862ace85077b3c254179cf179f4CAS | open url image1

Deardorff, J. A., and Sachs, A. B. (1997). Differential effects of aromatic and charged residue substitutions in the RNA binding domains of the yeast poly(A)-binding protein. J. Mol. Biol. 269, 67–81.
Differential effects of aromatic and charged residue substitutions in the RNA binding domains of the yeast poly(A)-binding protein.CrossRef | 1:CAS:528:DyaK2sXktVKntr8%3D&md5=ba228fcecf7149966f9f103c72abc333CAS | open url image1

Derry, M. C., Yanagiya, A., Martineau, Y., and Sonenberg, N. (2006). Regulation of poly(A)-binding protein through PABP-interacting proteins. Cold Spring Harb. Symp. Quant. Biol. 71, 537–543.
Regulation of poly(A)-binding protein through PABP-interacting proteins.CrossRef | 1:CAS:528:DC%2BD2sXls1yrtbY%3D&md5=29895f762c00b303e3d7b756e299615bCAS | open url image1

Drawbridge, J., Grainger, J. L., and Winkler, M. M. (1990). Identification and characterization of the poly(A)-binding proteins from the sea urchin: a quantitative analysis. Mol. Cell. Biol. 10, 3994–4006.
Identification and characterization of the poly(A)-binding proteins from the sea urchin: a quantitative analysis.CrossRef | 1:CAS:528:DyaK3cXltFWhsr8%3D&md5=be0b6ff4c2514594ff67a83d083dee5fCAS | open url image1

Ertzeid, G., and Storeng, R. (2001). The impact of ovarian stimulation on implantation and fetal development in mice. Hum. Reprod. 16, 221–225.
The impact of ovarian stimulation on implantation and fetal development in mice.CrossRef | 1:CAS:528:DC%2BD3MXhsFGrs70%3D&md5=343f61795014dd6ffcde8e2615c7aa85CAS | open url image1

Fabian, M. R., Mathonnet, G., Sundermeier, T., Mathys, H., Zipprich, J. T., Svitkin, Y. V., Rivas, F., Jinek, M., Wohlschlegel, J., Doudna, J. A., Chen, C. Y., Shyu, A. B., Yates, J. R., Hannon, G. J., Filipowicz, W., Duchaine, T. F., and Sonenberg, N. (2009). Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35, 868–880.
Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation.CrossRef | 1:CAS:528:DC%2BD1MXhsVChsrzJ&md5=9f1cb684f58f32929700c003d803675eCAS | open url image1

Farley, B. M., and Ryder, S. P. (2008). Regulation of maternal mRNAs in early development. Crit. Rev. Biochem. Mol. Biol. 43, 135–162.
Regulation of maternal mRNAs in early development.CrossRef | 1:CAS:528:DC%2BD1cXjs12gsL8%3D&md5=0071bb4f563d791a1cdc5b1b864cc0fbCAS | open url image1

Féral, C., Guellaën, G., and Pawlak, A. (2001). Human testis expresses a specific poly(A)-binding protein. Nucleic Acids Res. 29, 1872–1883.
Human testis expresses a specific poly(A)-binding protein.CrossRef | open url image1

Ferby, I., Blazquez, M., Palmer, A., Eritja, R., and Nebreda, A. R. (1999). A novel p34(cdc2)-binding and activating protein that is necessary and sufficient to trigger G(2)/M progression in Xenopus oocytes. Genes Dev. 13, 2177–2189.
A novel p34(cdc2)-binding and activating protein that is necessary and sufficient to trigger G(2)/M progression in Xenopus oocytes.CrossRef | 1:CAS:528:DyaK1MXmtValsbg%3D&md5=b44ab92f97050b43230918fdf0489e58CAS | open url image1

Flach, G., Johnson, M. H., Braude, P. R., Taylor, R. A., and Bolton, V. N. (1982). The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J. 1, 681–686.
| 1:CAS:528:DyaL38XltVOrsL0%3D&md5=ed64180008d0c8c1f0d6d063d250fdbcCAS | open url image1

Ford, L. P., Bagga, P. S., and Wilusz, J. (1997). The poly(A) tail inhibits the assembly of a 3′-to-5′ exonuclease in an in vitro RNA stability system. Mol. Cell. Biol. 17, 398–406.
The poly(A) tail inhibits the assembly of a 3′-to-5′ exonuclease in an in vitro RNA stability system.CrossRef | 1:CAS:528:DyaK2sXhtlKntg%3D%3D&md5=7e49c951e130758fe3ab9f4decb2e7fdCAS | open url image1

Fortier, A. L., Lopes, F. L., Darricarrere, N., Martel, J., and Trasler, J. M. (2008). Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum. Mol. Genet. 17, 1653–1665.
Superovulation alters the expression of imprinted genes in the midgestation mouse placenta.CrossRef | 1:CAS:528:DC%2BD1cXmvFSrtL8%3D&md5=c8ae49620817a755901ec68161ae6fc4CAS | open url image1

Friend, K., Brook, M., Bezirci, F. B., Sheets, M. D., Gray, N. K., and Seli, E. (2012). Embryonic poly(A)-binding protein (ePAB) phosphorylation is required for Xenopus oocyte maturation. Biochem. J. 445, 93–100.
Embryonic poly(A)-binding protein (ePAB) phosphorylation is required for Xenopus oocyte maturation.CrossRef | 1:CAS:528:DC%2BC38XovVGnsLk%3D&md5=4d9a6847b60a76f32f3a2ab89d576783CAS | open url image1

Gallie, D. R., Le, H., Caldwell, C., Tanguay, R. L., Hoang, N. X., and Browning, K. S. (1997). The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat. J. Biol. Chem. 272, 1046–1053.
The phosphorylation state of translation initiation factors is regulated developmentally and following heat shock in wheat.CrossRef | 1:CAS:528:DyaK2sXmtFGlsw%3D%3D&md5=816b46d82740b3d846617be5245b48f7CAS | open url image1

Gebauer, F., and Hentze, M. W. (2004). Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827–835.
Molecular mechanisms of translational control.CrossRef | 1:CAS:528:DC%2BD2cXotVSlsrw%3D&md5=49782eea111264210c7fa3fba1511c0eCAS | open url image1

Gebauer, F., Xu, W., Cooper, G. M., and Richter, J. D. (1994). Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse. EMBO J. 13, 5712–5720.
| 1:CAS:528:DyaK2MXislGqsLs%3D&md5=542fcfdfb681c8500ab834440e5ddc7bCAS | open url image1

Good, P. J., Abler, L., Herring, D., and Sheets, M. D. (2004). Xenopus embryonic poly(A) binding protein 2 (ePABP2) defines a new family of cytoplasmic poly(A) binding proteins expressed during the early stages of vertebrate development. Genesis 38, 166–175.
Xenopus embryonic poly(A) binding protein 2 (ePABP2) defines a new family of cytoplasmic poly(A) binding proteins expressed during the early stages of vertebrate development.CrossRef | 1:CAS:528:DC%2BD2cXkslOks7Y%3D&md5=7a65978a2742a836e6be5392c2ff0dd2CAS | open url image1

Gorgoni, B., and Gray, N. K. (2004). The roles of cytoplasmic poly(A)-binding proteins in regulating gene expression: a developmental perspective. Brief. Funct. Genomic Proteomic 3, 125–141.
The roles of cytoplasmic poly(A)-binding proteins in regulating gene expression: a developmental perspective.CrossRef | 1:CAS:528:DC%2BD2cXosVWjtrk%3D&md5=7cdb2ce25ec7f1392df945e890e4869fCAS | open url image1

Gorgoni, B., Richardson, W. A., Burgess, H. M., Anderson, R. C., Wilkie, G. S., Gautier, P., Martins, J. P., Brook, M., Sheets, M. D., and Gray, N. K. (2011). Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development. Proc. Natl Acad. Sci. USA 108, 7844–7849.
Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development.CrossRef | 1:CAS:528:DC%2BC3MXmsVSktLg%3D&md5=4ef693bcdcb062ab053d8e6524a4c3eeCAS | open url image1

Görlach, M., Burd, C. G., and Dreyfuss, G. (1994). The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity. Exp. Cell Res. 211, 400–407.
The mRNA poly(A)-binding protein: localization, abundance, and RNA-binding specificity.CrossRef | open url image1

Gray, N. K., Coller, J. M., Dickson, K. S., and Wickens, M. (2000). Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J. 19, 4723–4733.
Multiple portions of poly(A)-binding protein stimulate translation in vivo.CrossRef | 1:CAS:528:DC%2BD3cXmslGrsr0%3D&md5=b3accb514b1b8efda57ae3ca0c4ec4bdCAS | open url image1

Groisman, I., Huang, Y. S., Mendez, R., Cao, Q., Theurkauf, W., and Richter, J. D. (2000). CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 103, 435–447.
CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division.CrossRef | 1:CAS:528:DC%2BD3cXnvF2ks7Y%3D&md5=3237c39f6544a995d1c8c348db013bc6CAS | open url image1

Guzeloglu-Kayisli, O., Pauli, S., Demir, H., Lalioti, M. D., Sakkas, D., and Seli, E. (2008). Identification and characterization of human embryonic poly(A) binding protein (EPAB). Mol. Hum. Reprod. 14, 581–588.
Identification and characterization of human embryonic poly(A) binding protein (EPAB).CrossRef | 1:CAS:528:DC%2BD1MXltV2jtQ%3D%3D&md5=a9060c9495353dfb157cacc5a2c9b90fCAS | open url image1

Guzeloglu-Kayisli, O., Lalioti, M. D., Aydiner, F., Sasson, I., Ilbay, O., Sakkas, D., Lowther, K. M., Mehlmann, L. M., and Seli, E. (2012). Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice. Biochem. J. 446, 47–58.
Embryonic poly(A)-binding protein (EPAB) is required for oocyte maturation and female fertility in mice.CrossRef | 1:CAS:528:DC%2BC38XhtFShsL%2FI&md5=5c286d598f6e367cc8c74b81174a320aCAS | open url image1

Houng, A. K., Maggini, L., Clement, C. Y., and Reed, G. L. (1997). Identification and structure of activated-platelet protein-1, a protein with RNA-binding domain motifs that is expressed by activated platelets. Eur. J. Biochem. 243, 209–218.
Identification and structure of activated-platelet protein-1, a protein with RNA-binding domain motifs that is expressed by activated platelets.CrossRef | 1:CAS:528:DyaK2sXhtVWit7g%3D&md5=b8340f08b4b6cb97a612159bb64aeb47CAS | open url image1

Keady, B. T., Kuo, P., Martinez, S. E., Yuan, L., and Hake, L. E. (2007). MAPK interacts with XGef and is required for CPEB activation during meiosis in Xenopus oocytes. J. Cell Sci. 120, 1093–1103.
MAPK interacts with XGef and is required for CPEB activation during meiosis in Xenopus oocytes.CrossRef | 1:CAS:528:DC%2BD2sXkvVWjtr8%3D&md5=daaeeac3b57b3e1457b1fb5e31e8ff8fCAS | open url image1

Khaleghpour, K., Svitkin, Y. V., Craig, A. W., DeMaria, C. T., Deo, R. C., Burley, S. K., and Sonenberg, N. (2001). Translational repression by a novel partner of human poly(A) binding protein, Paip2. Mol. Cell 7, 205–216.
Translational repression by a novel partner of human poly(A) binding protein, Paip2.CrossRef | 1:CAS:528:DC%2BD3MXis1Kitrw%3D&md5=3773e835a4e861ce91ebd6078ac1758cCAS | open url image1

Kim, J. H., and Richter, J. D. (2007). RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB. Genes Dev. 21, 2571–2579.
RINGO/cdk1 and CPEB mediate poly(A) tail stabilization and translational regulation by ePAB.CrossRef | 1:CAS:528:DC%2BD2sXht1WnsbjI&md5=81188a4db1d21c7a0292cd7394034363CAS | open url image1

Kimura, M., Ishida, K., Kashiwabara, S., and Baba, T. (2009). Characterization of two cytoplasmic poly(A)-binding proteins, PABPC1 and PABPC2, in mouse spermatogenic cells. Biol. Reprod. 80, 545–554.
Characterization of two cytoplasmic poly(A)-binding proteins, PABPC1 and PABPC2, in mouse spermatogenic cells.CrossRef | 1:CAS:528:DC%2BD1MXis1amtb0%3D&md5=bab92959b209b2961b914208abc7adbbCAS | open url image1

Kini, H. K., Vishnu, M. R., and Liebhaber, S. A. (2010). Too much PABP, too little translation. J. Clin. Invest. 120, 3090–3093.
Too much PABP, too little translation.CrossRef | 1:CAS:528:DC%2BC3cXhtFertb3N&md5=d65c7e544120ad99b8a7171c4f1eea95CAS | open url image1

Kleene, K. C., Wang, M. Y., Cutler, M., Hall, C., and Shih, D. (1994). Developmental expression of poly(A) binding protein mRNAs during spermatogenesis in the mouse. Mol. Reprod. Dev. 39, 355–364.
Developmental expression of poly(A) binding protein mRNAs during spermatogenesis in the mouse.CrossRef | 1:CAS:528:DyaK2MXisFWjtrw%3D&md5=20396f1cb07a1ccea32c786b73ef8a3dCAS | open url image1

Kleene, K. C., Mulligan, E., Steiger, D., Donohue, K., and Mastrangelo, M. A. (1998). The mouse gene encoding the testis-specific isoform of Poly(A) binding protein (Pabp2) is an expressed retroposon: intimations that gene expression in spermatogenic cells facilitates the creation of new genes. J. Mol. Evol. 47, 275–281.
The mouse gene encoding the testis-specific isoform of Poly(A) binding protein (Pabp2) is an expressed retroposon: intimations that gene expression in spermatogenic cells facilitates the creation of new genes.CrossRef | 1:CAS:528:DyaK1cXmt1ansb8%3D&md5=5801db9326319d467041500f1bff8593CAS | open url image1

Ko, S., Park, J. H., Lee, A. R., Kim, E., Jiyoung, K., Kawasaki, I., and Shim, Y. H. (2010). Two mutations in pab-1 encoding poly(A)-binding protein show similar defects in germline stem cell proliferation but different longevity in C. elegans. Mol. Cells 30, 167–172.
Two mutations in pab-1 encoding poly(A)-binding protein show similar defects in germline stem cell proliferation but different longevity in C. elegans.CrossRef | 1:CAS:528:DC%2BC3cXhtVOmtrbP&md5=cc4bb733c85b3d983d284b897436689aCAS | open url image1

Körner, C. G., Wormington, M., Muckenthaler, M., Schneider, S., Dehlin, E., and Wahle, E. (1998). The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J. 17, 5427–5437.
The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes.CrossRef | open url image1

Kozlov, G., Trempe, J. F., Khaleghpour, K., Kahvejian, A., Ekiel, I., and Gehring, K. (2001). Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. Proc. Natl Acad. Sci. USA 98, 4409–4413.
Structure and function of the C-terminal PABC domain of human poly(A)-binding protein.CrossRef | 1:CAS:528:DC%2BD3MXjtVagtrw%3D&md5=5f90921ae58209ba770ab794fafa8d71CAS | open url image1

Kozlov, G., De Crescenzo, G., Lim, N. S., Siddiqui, N., Fantus, D., Kahvejian, A., Trempe, J. F., Elias, D., Ekiel, I., Sonenberg, N., O’Connor-McCourt, M., and Gehring, K. (2004). Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase. EMBO J. 23, 272–281.
Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase.CrossRef | 1:CAS:528:DC%2BD2cXhtVeqsb0%3D&md5=c628a470b585da5721b5334333031b97CAS | open url image1

Kozlov, G., Menade, M., Rosenauer, A., Nguyen, L., and Gehring, K. (2010). Molecular determinants of PAM2 recognition by the MLLE domain of poly(A)-binding protein. J. Mol. Biol. 397, 397–407.
Molecular determinants of PAM2 recognition by the MLLE domain of poly(A)-binding protein.CrossRef | 1:CAS:528:DC%2BC3cXivFGqsLY%3D&md5=81fb4d7613d00e90ffa4fe2cf5bfc5eaCAS | open url image1

Kühn, U., and Pieler, T. (1996). Xenopus poly(A) binding protein: functional domains in RNA binding and protein–protein interaction. J. Mol. Biol. 256, 20–30.
Xenopus poly(A) binding protein: functional domains in RNA binding and protein–protein interaction.CrossRef | open url image1

Kühn, U., and Wahle, E. (2004). Structure and function of poly(A) binding proteins. Biochim. Biophys. Acta 1678, 67–84.
Structure and function of poly(A) binding proteins.CrossRef | open url image1

Lowther, K. M., and Mehlmann, L. M. (2015). Embryonic poly(A)-binding protein is required during early stages of mouse oocyte development for chromatin organization, transcriptional silencing, and meiotic competence. Biol. Reprod. 93, 43.
Embryonic poly(A)-binding protein is required during early stages of mouse oocyte development for chromatin organization, transcriptional silencing, and meiotic competence.CrossRef | open url image1

Mangus, D. A., Evans, M. C., and Jacobson, A. (2003). Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 4, 223.
Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression.CrossRef | open url image1

Martineau, Y., Derry, M. C., Wang, X., Yanagiya, A., Berlanga, J. J., Shyu, A. B., Imataka, H., Gehring, K., and Sonenberg, N. (2008). Poly(A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation. Mol. Cell. Biol. 28, 6658–6667.
Poly(A)-binding protein-interacting protein 1 binds to eukaryotic translation initiation factor 3 to stimulate translation.CrossRef | 1:CAS:528:DC%2BD1cXhtlWiu7bF&md5=313ff23a1cdd19eca22c125eb4c0141aCAS | open url image1

Matova, N., and Cooley, L. (2001). Comparative aspects of animal oogenesis. Dev. Biol. 231, 291–320.
Comparative aspects of animal oogenesis.CrossRef | 1:CAS:528:DC%2BD3MXhsFOhtrc%3D&md5=1fc4f24a0df24e48225ac433f69c3de6CAS | open url image1

Melo, E. O., Dhalia, R., Martins de Sa, C., Standart, N., and de Melo Neto, O. P. (2003). Identification of a C-terminal poly(A)-binding protein (PABP)–PABP interaction domain: role in cooperative binding to poly(A) and efficient cap distal translational repression. J. Biol. Chem. 278, 46 357–46 368.
Identification of a C-terminal poly(A)-binding protein (PABP)–PABP interaction domain: role in cooperative binding to poly(A) and efficient cap distal translational repression.CrossRef | 1:CAS:528:DC%2BD3sXovFKltb4%3D&md5=79928f558aeb251f72379ab909c29717CAS | open url image1

Mendez, R., Hake, L. E., Andresson, T., Littlepage, L. E., Ruderman, J. V., and Richter, J. D. (2000). Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404, 302–307.
Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA.CrossRef | 1:CAS:528:DC%2BD3cXit1ansLY%3D&md5=5c74d8950398e0da35a394aac426e6f2CAS | open url image1

Miskimins, W. K., Wang, G., Hawkinson, M., and Miskimins, R. (2001). Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation. Mol. Cell. Biol. 21, 4960–4967.
Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation.CrossRef | 1:CAS:528:DC%2BD3MXlsVGit7o%3D&md5=d7483e85442a71534c9f514e81f62655CAS | open url image1

Mühlemann, O. (2008). Recognition of nonsense mRNA: towards a unified model. Biochem. Soc. Trans. 36, 497–501.
Recognition of nonsense mRNA: towards a unified model.CrossRef | open url image1

Oktem, O., and Urman, B. (2010). Understanding follicle growth in vivo. Hum. Reprod. 25, 2944–2954.
Understanding follicle growth in vivo.CrossRef | open url image1

Ozturk, S., Guzeloglu-Kayisli, O., Demir, N., Sozen, B., Ilbay, O., Lalioti, M. D., and Seli, E. (2012). Epab and Pabpc1 are differentially expressed during male germ cell development. Reprod. Sci. 19, 911–922.
Epab and Pabpc1 are differentially expressed during male germ cell development.CrossRef | open url image1

Ozturk, S., Sozen, B., and Demir, N. (2015). Epab and Pabpc1 are differentially expressed in the postnatal mouse ovaries. J. Assist. Reprod. Genet. 32, 137–146.
Epab and Pabpc1 are differentially expressed in the postnatal mouse ovaries.CrossRef | open url image1

Ozturk, S., Yaba-Ucar, A., Sozen, B., Mutlu, D., and Demir, N. (2016). Superovulation alters embryonic poly(A)-binding protein (Epab) and poly(A)-binding protein, cytoplasmic 1 (Pabpc1) gene expression in mouse oocytes and early embryos. Reprod. Fertil. Dev. 28, 375–383.
Superovulation alters embryonic poly(A)-binding protein (Epab) and poly(A)-binding protein, cytoplasmic 1 (Pabpc1) gene expression in mouse oocytes and early embryos.CrossRef | 1:CAS:528:DC%2BC28XhtFOjsbY%3D&md5=bb5caa7247e2f7b42aa4541416a56e0dCAS | open url image1

Padmanabhan, K., and Richter, J. D. (2006). Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation. Genes Dev. 20, 199–209.
Regulated Pumilio-2 binding controls RINGO/Spy mRNA translation and CPEB activation.CrossRef | 1:CAS:528:DC%2BD28XptlKjug%3D%3D&md5=8d8b3ed27206c4004b44d528d46442a2CAS | open url image1

Page, A. W., and Orr-Weaver, T. L. (1997). Stopping and starting the meiotic cell cycle. Curr. Opin. Genet. Dev. 7, 23–31.
Stopping and starting the meiotic cell cycle.CrossRef | 1:CAS:528:DyaK2sXhsVeisrc%3D&md5=e61b7e10710a61f22cc290a008e46ba4CAS | open url image1

Patel, G. P., Ma, S., and Bag, J. (2005). The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res. 33, 7074–7089.
The autoregulatory translational control element of poly(A)-binding protein mRNA forms a heteromeric ribonucleoprotein complex.CrossRef | 1:CAS:528:DC%2BD28XisFKqtg%3D%3D&md5=83eb2d8ff39f57011e9850491b6a8378CAS | open url image1

Piccioni, F., Zappavigna, V., and Verrotti, A. C. (2005). Translational regulation during oogenesis and early development: the cap-poly(A) tail relationship. C. R. Biol. 328, 863–881.
Translational regulation during oogenesis and early development: the cap-poly(A) tail relationship.CrossRef | 1:CAS:528:DC%2BD2MXht1Sru7zM&md5=81e60577a80dcf63407e573f60c24f7bCAS | open url image1

Racki, W. J., and Richter, J. D. (2006). CPEB controls oocyte growth and follicle development in the mouse. Development 133, 4527–4537.
CPEB controls oocyte growth and follicle development in the mouse.CrossRef | 1:CAS:528:DC%2BD2sXjs1Wl&md5=3fbde4b6b625880b016fdb57b45af858CAS | open url image1

Richter, J. D. (2007). CPEB: a life in translation. Trends Biochem. Sci. 32, 279–285.
CPEB: a life in translation.CrossRef | 1:CAS:528:DC%2BD2sXmtlahsbw%3D&md5=a193fbce4d932a1ee7d4672c50e92e61CAS | open url image1

Roy, G., De Crescenzo, G., Khaleghpour, K., Kahvejian, A., O’Connor-McCourt, M., and Sonenberg, N. (2002). Paip1 interacts with poly(A) binding protein through two independent binding motifs. Mol. Cell. Biol. 22, 3769–3782.
Paip1 interacts with poly(A) binding protein through two independent binding motifs.CrossRef | 1:CAS:528:DC%2BD38XjslWltrk%3D&md5=2f1e6a5ec640123cc7759ff205fafd8cCAS | open url image1

Sachs, A. B., Davis, R. W., and Kornberg, R. D. (1987). A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol. Cell. Biol. 7, 3268–3276.
A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability.CrossRef | 1:CAS:528:DyaL1cXit1yl&md5=b80b2959ff4778b51d8d242bd4a6c049CAS | open url image1

Sakugawa, N., Miyamoto, T., Sato, H., Ishikawa, M., Horikawa, M., Hayashi, H., and Sengoku, K. (2008). Isolation of the human ePAB and ePABP2 cDNAs and analysis of the expression patterns. J. Assist. Reprod. Genet. 25, 215–221.
Isolation of the human ePAB and ePABP2 cDNAs and analysis of the expression patterns.CrossRef | 1:STN:280:DC%2BD1czksVSjug%3D%3D&md5=ad8c8248e40a4c64d9282e92e7622c9dCAS | open url image1

Seli, E., Lalioti, M. D., Flaherty, S. M., Sakkas, D., Terzi, N., and Steitz, J. A. (2005). An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc. Natl Acad. Sci. USA 102, 367–372.
An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos.CrossRef | 1:CAS:528:DC%2BD2MXptFSksw%3D%3D&md5=7380713b559c8de014c8f58c4652ef5dCAS | open url image1

Siddiqui, N., Mangus, D. A., Chang, T. C., Palermino, J. M., Shyu, A. B., and Gehring, K. (2007). Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein. J. Biol. Chem. 282, 25 067–25 075.
Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein.CrossRef | 1:CAS:528:DC%2BD2sXpt1SltLs%3D&md5=2fe538250c7503860344b1f37ef22293CAS | open url image1

Smith, R. W., Blee, T. K., and Gray, N. K. (2014). Poly(A)-binding proteins are required for diverse biological processes in metazoans. Biochem. Soc. Trans. 42, 1229–1237.
Poly(A)-binding proteins are required for diverse biological processes in metazoans.CrossRef | 1:CAS:528:DC%2BC2cXhtlWktLfP&md5=9ed418fc90534f850186364c15f4e1ecCAS | open url image1

Stebbins-Boaz, B., Cao, Q., de Moor, C. H., Mendez, R., and Richter, J. D. (1999). Maskin is a CPEB-associated factor that transiently interacts with elF–4E. Mol. Cell 4, 1017–1027.
Maskin is a CPEB-associated factor that transiently interacts with elF–4E.CrossRef | 1:CAS:528:DC%2BD3cXislaqsg%3D%3D&md5=7fc6b83d419d2089e9c0af7f3e553b2dCAS | open url image1

Thakurta, A. G., Ho Yoon, J., and Dhar, R. (2002). Schizosaccharomyces pombe spPABP, a homologue of Saccharomyces cerevisiae Pab1p, is a non-essential, shuttling protein that facilitates mRNA export. Yeast 19, 803–810.
Schizosaccharomyces pombe spPABP, a homologue of Saccharomyces cerevisiae Pab1p, is a non-essential, shuttling protein that facilitates mRNA export.CrossRef | open url image1

Tian, B., and Graber, J. H. (2012). Signals for pre-mRNA cleavage and polyadenylation. Wiley Interdiscip. Rev. RNA 3, 385–396.
Signals for pre-mRNA cleavage and polyadenylation.CrossRef | 1:CAS:528:DC%2BC38XovVyktbw%3D&md5=1f0135146ad639b17641b011b97b5241CAS | open url image1

Tourrière, H., Chebli, K., and Tazi, J. (2002). mRNA degradation machines in eukaryotic cells. Biochimie 84, 821–837.
mRNA degradation machines in eukaryotic cells.CrossRef | open url image1

Voeltz, G. K., Ongkasuwan, J., Standart, N., and Steitz, J. A. (2001). A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev. 15, 774–788.
A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts.CrossRef | 1:CAS:528:DC%2BD3MXisFSku7s%3D&md5=abcdf13b3965c7dd5c23b14f6f7ef920CAS | open url image1

Wahle, E. (1991). A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell 66, 759–768.
A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation.CrossRef | 1:CAS:528:DyaK3MXmt1Khu78%3D&md5=27a19924e88a4ffa92505c30acfad28dCAS | open url image1

Wahle, E., Lustig, A., Jeno, P., and Maurer, P. (1993). Mammalian poly(A)-binding protein II. Physical properties and binding to polynucleotides. J. Biol. Chem. 268, 2937–2945.
| 1:CAS:528:DyaK3sXhvVKiu78%3D&md5=aa530cc5b2121ce038cac5e252564e17CAS | open url image1

Wang, Z., Parisien, M., Scheets, K., and Miller, W. A. (2011). The cap-binding translation initiation factor, eIF4E, binds a pseudoknot in a viral cap-independent translation element. Structure 19, 868–880.
The cap-binding translation initiation factor, eIF4E, binds a pseudoknot in a viral cap-independent translation element.CrossRef | 1:CAS:528:DC%2BC3MXntFGnsrY%3D&md5=33660cb12f41c9888bc57ab15cd32341CAS | open url image1

Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. (1998). Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135–140.
Circularization of mRNA by eukaryotic translation initiation factors.CrossRef | 1:CAS:528:DyaK1cXltVCjtLo%3D&md5=4efafd49a78d575336cbd2cd621e0b9aCAS | open url image1

Wilkie, G. S., Gautier, P., Lawson, D., and Gray, N. K. (2005). Embryonic poly(A)-binding protein stimulates translation in germ cells. Mol. Cell. Biol. 25, 2060–2071.
Embryonic poly(A)-binding protein stimulates translation in germ cells.CrossRef | 1:CAS:528:DC%2BD2MXhvFGqtbo%3D&md5=e823681a663486ddc5290d947c1f1336CAS | open url image1

Wormington, M., Searfoss, A. M., and Hurney, C. A. (1996). Overexpression of poly(A) binding protein prevents maturation-specific deadenylation and translational inactivation in Xenopus oocytes. EMBO J. 15, 900–909.
| 1:CAS:528:DyaK28XhsFGgtLk%3D&md5=1c267c28589c50164cc0e95c577cf8c4CAS | open url image1

Wu, J., and Bag, J. (1998). Negative control of the poly(A)-binding protein mRNA translation is mediated by the adenine-rich region of its 5′-untranslated region. J. Biol. Chem. 273, 34 535–34 542.
Negative control of the poly(A)-binding protein mRNA translation is mediated by the adenine-rich region of its 5′-untranslated region.CrossRef | 1:CAS:528:DyaK1MXntlCg&md5=ccadea8b7fc9232e4ca0c6034b8b9cfcCAS | open url image1

Yanagiya, A., Delbes, G., Svitkin, Y. V., Robaire, B., and Sonenberg, N. (2010). The poly(A)-binding protein partner Paip2a controls translation during late spermiogenesis in mice. J. Clin. Invest. 120, 3389–3400.
The poly(A)-binding protein partner Paip2a controls translation during late spermiogenesis in mice.CrossRef | 1:CAS:528:DC%2BC3cXhtFertbvF&md5=a8827dd279548076a0424148db09f4d1CAS | open url image1

Yang, H., Duckett, C. S., and Lindsten, T. (1995). iPABP, an inducible poly(A)-binding protein detected in activated human T cells. Mol. Cell. Biol. 15, 6770–6776.
iPABP, an inducible poly(A)-binding protein detected in activated human T cells.CrossRef | 1:CAS:528:DyaK2MXpsFKqtbY%3D&md5=366db0a07f9688de71437d79a2b4678cCAS | open url image1

Yang, C. R., Lowther, K. M., Lalioti, M. D., and Seli, E. (2016). Embryonic poly(A)-binding protein (EPAB) is required for granulosa cell EGF signaling and cumulus expansion in female mice. Endocrinology 157, 405–416.
Embryonic poly(A)-binding protein (EPAB) is required for granulosa cell EGF signaling and cumulus expansion in female mice.CrossRef | 1:CAS:528:DC%2BC28XksFagtL8%3D&md5=2d03d92a3d90aa503b3e0ae88e52a1b3CAS | open url image1

Zekri, L., Huntzinger, E., Heimstadt, S., and Izaurralde, E. (2009). The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol. Cell. Biol. 29, 6220–6231.
The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release.CrossRef | 1:CAS:528:DC%2BD1MXhsV2ltLfN&md5=d9ca7d5f3789ec9d3626686f4927cab9CAS | open url image1

Zelus, B. D., Giebelhaus, D. H., Eib, D. W., Kenner, K. A., and Moon, R. T. (1989). Expression of the poly(A)-binding protein during development of Xenopus laevis. Mol. Cell. Biol. 9, 2756–2760.
Expression of the poly(A)-binding protein during development of Xenopus laevis.CrossRef | 1:CAS:528:DyaK3cXkvFOjsw%3D%3D&md5=c22c06590dbad1c60213a8fb706e786eCAS | open url image1



Export Citation