Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Tissue cell stress response to obesity and its interaction with late gestation diet

Vivek Saroha A * , Neele S. Dellschaft A * , Duane H. Keisler D , David S. Gardner C , Helen Budge A , Sylvain P. Sebert A E F and Michael E. Symonds A B G
+ Author Affiliations
- Author Affiliations

A Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.

B Nottingham Digestive Disease Centre and Biomedical Research Unit, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.

C School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Nottingham LE12 5RD, UK.

D Department of Animal Science, University of Missouri, Columbia, MO 65211, USA.

E Centre for Life-Course Health Research, and Biocentre Oulu, University of Oulu, Aapistie 5B, 90014 Oulu, Finland.

F Department of Genomics of Complex Diseases, Imperial College London, London, UK.

G Corresponding author. Email: michael.symonds@nottingham.ac.uk

Reproduction, Fertility and Development - https://doi.org/10.1071/RD16494
Submitted: 7 December 2016  Accepted: 8 July 2017   Published online: 3 August 2017

Abstract

Intrauterine growth restriction in late pregnancy can contribute to adverse long-term metabolic health in the offspring. In the present study we used an animal (sheep) model of maternal dietary manipulation in late pregnancy, combined with exposure of the offspring to a low-activity, obesogenic environment after weaning, to characterise the effects on glucose homeostasis. Dizygotic twin-pregnant sheep were either fed to 60% of requirements (nutrient restriction (R)) or fed ad libitum (~140% of requirements (A)) from 110 days gestation until term (~147 days). After weaning (~3 months of age), the offspring were kept in either a standard (in order to remain lean) or low-activity, obesogenic environment. R mothers gained less weight and produced smaller offspring. As adults, obese offspring were heavier and fatter with reduced glucose tolerance, regardless of maternal diet. Molecular markers of stress and autophagy in liver and adipose tissue were increased with obesity, with gene expression of hepatic glucose-related protein 78 (Grp78) and omental activation transcription factor 6 (Atf6), Grp78 and ER stress degradation enhancer molecule 1 (Edem1) only being increased in R offspring. In conclusion, the adverse effect of juvenile-onset obesity on insulin-responsive tissues can be amplified by previous exposure to a suboptimal nutritional environment in utero, thereby contributing to earlier onset of insulin resistance.

Additional keywords: adipose tissue, appetite, growth, nutrition.


References

Adabimohazab, R., Garfinkel, A., Milam, E. C., Frosch, O., Mangone, A., and Convit, A. (2016). Does inflammation mediate the association between obesity and insulin resistance? Inflammation 39, 994–1003.
Does inflammation mediate the association between obesity and insulin resistance?CrossRef | 1:CAS:528:DC%2BC28XktlCju7k%3D&md5=fbd4c39d416ab1de72bd18ee0e00bf2fCAS | open url image1

Amir, M., and Czaja, M. J. (2011). Autophagy in nonalcoholic steatohepatitis. Expert Rev. Gastroenterol. Hepatol. 5, 159–166.
Autophagy in nonalcoholic steatohepatitis.CrossRef | open url image1

Arana, A., Mendizabal, J. A., Alzon, M., Soret, B., and Purroy, A. (2008). The effect of vitamin A supplementation on postnatal adipose tissue development of lambs. J. Anim. Sci. 86, 3393–3400.
The effect of vitamin A supplementation on postnatal adipose tissue development of lambs.CrossRef | 1:CAS:528:DC%2BD1cXhsV2jsbzE&md5=31dd66efa4711a69a4f5f9bfedfd0785CAS | open url image1

B’chir, W., Maurin, A.-C., Carraro, V., Averous, J., Jousse, C., Muranishi, Y., Parry, L., Stepien, G., Fafournoux, P., and Bruhat, A. (2013). The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41, 7683–7699.
The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression.CrossRef | 1:CAS:528:DC%2BC3sXhvVeitbjF&md5=bf4306dcda16a7d5a21af102ef07981cCAS | open url image1

Barker, D. J. (1997). Fetal nutrition and cardiovascular disease in later life. Br. Med. Bull. 53, 96–108.
Fetal nutrition and cardiovascular disease in later life.CrossRef | 1:STN:280:DyaK2szgtF2htA%3D%3D&md5=c19d4007d2405c044118f2b606406700CAS | open url image1

Bloor, I. D., Sébert, S. P., Saroha, V., Gardner, D. S., Keisler, D. H., Budge, H., Symonds, M. E., and Mahajan, R. P. (2013). Sex differences in metabolic and adipose tissue responses to juvenile-onset obesity in sheep. Endocrinology 154, 3622–3631.
Sex differences in metabolic and adipose tissue responses to juvenile-onset obesity in sheep.CrossRef | 1:CAS:528:DC%2BC3sXhsFKlt7bJ&md5=a3e57a9bc3c78eb632b092c4bed38262CAS | open url image1

Bryden, M. M., Evans, H. E., and Binns, W. (1972). Embryology of the sheep. II. The alimentary tract and associated glands. J. Morphol. 138, 187–205.
Embryology of the sheep. II. The alimentary tract and associated glands.CrossRef | 1:STN:280:DyaE3s%2Fit1ehtg%3D%3D&md5=3c95d5026e854cd6acdac20c1736f347CAS | open url image1

Budge, H., Bispham, J., Dandrea, J., Evans, E., Heasman, L., Ingleton, P. M., Sullivan, C., Wilson, V., Stephenson, T., and Symonds, M. E. (2000). Effect of maternal nutrition on brown adipose tissue and its prolactin receptor status in the fetal lamb. Pediatr. Res. 47, 781–786.
Effect of maternal nutrition on brown adipose tissue and its prolactin receptor status in the fetal lamb.CrossRef | 1:STN:280:DC%2BD3cvit1eisg%3D%3D&md5=c0e43fd8626fe71053f8358afbaf2fa0CAS | open url image1

Cnop, M., Foufelle, F., and Velloso, L. A. (2012). Endoplasmic reticulum stress, obesity and diabetes. Trends Mol. Med. 18, 59–68.
Endoplasmic reticulum stress, obesity and diabetes.CrossRef | 1:CAS:528:DC%2BC38XptVSgtw%3D%3D&md5=cff898eeff0a3cd236306b02462be594CAS | open url image1

Considine, R. V., Sinha, M. K., Heiman, M. L., Kriauciunas, A., Stephens, T. W., Nyce, M. R., Ohannesian, J. P., Marco, C. C., McKee, L. J., and Bauer, T. L. (1996). Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 334, 292–295.
Serum immunoreactive-leptin concentrations in normal-weight and obese humans.CrossRef | 1:STN:280:DyaK287jtlOnsw%3D%3D&md5=ba01f16d9af604541537fee23d300e40CAS | open url image1

de Rooij, S. R., Painter, R. C., Holleman, F., Bossuyt, P. M., and Roseboom, T. J. (2007). The metabolic syndrome in adults prenatally exposed to the Dutch famine. Am. J. Clin. Nutr. 86, 1219–1224.
| 1:CAS:528:DC%2BD2sXhtFyksLrO&md5=a8060d4e579fd63e2476f223256e61bcCAS | open url image1

Delavaud, C., Bocquier, F., Chilliard, Y., Keisler, D. H., Gertler, A., and Kann, G. (2000). Plasma leptin determination in ruminants: effect of nutritional status and body fatness on plasma leptin concentration assessed by a specific RIA in sheep. J. Endocrinol. 165, 519–526.
Plasma leptin determination in ruminants: effect of nutritional status and body fatness on plasma leptin concentration assessed by a specific RIA in sheep.CrossRef | 1:CAS:528:DC%2BD3cXjvFegtb4%3D&md5=4ec369d82a8846cd87669bfd28b2eec6CAS | open url image1

Dellschaft, N. S., Alexandre-Gouabau, M.-C., Gardner, D. S., Antignac, J.-P., Keisler, D. H., Budge, H., Symonds, M. E., and Sebert, S. P. (2015). Effect of pre- and postnatal growth and post-weaning activity on glucose metabolism in the offspring. J. Endocrinol. 224, 171–182.
Effect of pre- and postnatal growth and post-weaning activity on glucose metabolism in the offspring.CrossRef | 1:CAS:528:DC%2BC2MXmtV2mt7Y%3D&md5=41aa51ad7fdd7bfa22e0915eef88cec7CAS | open url image1

Dwyer, C. M. (2008). Genetic and physiological determinants of maternal behavior and lamb survival: implications for low-input sheep management. J. Anim. Sci. 86, E246–E258.
Genetic and physiological determinants of maternal behavior and lamb survival: implications for low-input sheep management.CrossRef | 1:STN:280:DC%2BD1c3lsVyntg%3D%3D&md5=19cdea4b7f43798bb0c3d759f64afc2cCAS | open url image1

Fraser, A., Ebrahim, S., Smith, G. D., and Lawlor, D. A. (2008). The associations between birthweight and adult markers of liver damage and function. Paediatr. Perinat. Epidemiol. 22, 12–21.
The associations between birthweight and adult markers of liver damage and function.CrossRef | open url image1

Fulda, S., Gorman, A. M., Hori, O., and Samali, A. (2010). Cellular stress responses: cell survival and cell death. Int. J. Cell Biol. 2010, 214074.
Cellular stress responses: cell survival and cell death.CrossRef | open url image1

Gardner, D. S., Tingey, K., Van Bon, B., Dandrea, J., Keisler, D. H., Stephenson, T., and Symonds, M. E. (2005). Programming of glucose-insulin metabolism in adult sheep after maternal undernutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R947–R954.
Programming of glucose-insulin metabolism in adult sheep after maternal undernutrition.CrossRef | 1:CAS:528:DC%2BD2MXhtFensb7I&md5=c63191ef36721956954ac37bad0cce16CAS | open url image1

González-Rodríguez, A., Mayoral, R., Agra, N., Valdecantos, M. P., Pardo, V., Miquilena-Colina, M. E., Vargas-Castrillón, J., Lo Iacono, O., Corazzari, M., Fimia, G. M., Piacentini, M., Muntané, J., Boscá, L., García-Monzón, C., Martín-Sanz, P., and Valverde, Á. M. (2014). Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5, e1179.
Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD.CrossRef | open url image1

Gregor, M. F., Yang, L., Fabbrini, E., Mohammed, B. S., Eagon, J. C., Hotamisligil, G. S., and Klein, S. (2009). Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58, 693–700.
Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss.CrossRef | 1:CAS:528:DC%2BD1MXjt1Wktrk%3D&md5=34e0303ba7e4d9dca3f8f0cb851d9841CAS | open url image1

Hollenbeck, C. B., Haskell, W., Rosenthal, M., and Reaven, G. M. (1985). Effect of habitual physical activity on regulation of insulin-stimulated glucose disposal in older males. J. Am. Geriatr. Soc. 33, 273–277.
Effect of habitual physical activity on regulation of insulin-stimulated glucose disposal in older males.CrossRef | 1:STN:280:DyaL2M7otlKgsg%3D%3D&md5=4da271b1d6e7a22ef88b378202e81449CAS | open url image1

Hyatt, M. A., Gardner, D. S., Sebert, S., Wilson, V., Davidson, N., Nigmatullina, Y., Chan, L. L. Y., Budge, H., and Symonds, M. E. (2011). Suboptimal maternal nutrition, during early fetal liver development, promotes lipid accumulation in the liver of obese offspring. Reproduction 141, 119–126.
Suboptimal maternal nutrition, during early fetal liver development, promotes lipid accumulation in the liver of obese offspring.CrossRef | 1:CAS:528:DC%2BC3MXisVehs7Y%3D&md5=a817f4c0e72e5b4d7e993a3722e7fd18CAS | open url image1

Lie, S., Duffield, J. A., McMillen, I. C., Morrison, J. L., Ozanne, S. E., Pilgrim, C., and Muhlhausler, B. S. (2013). The effect of placental restriction on insulin signaling and lipogenic pathways in omental adipose tissue in the postnatal lamb. J. Dev. Orig. Health Dis. 4, 421–429.
The effect of placental restriction on insulin signaling and lipogenic pathways in omental adipose tissue in the postnatal lamb.CrossRef | 1:CAS:528:DC%2BC3sXhtlOqu7rE&md5=45f588f4265f0e03cd6b000b180d0e7bCAS | open url image1

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.CrossRef | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=27001fc4d390214adec9d2e6245c9fd6CAS | open url image1

Micke, G. C., Sullivan, T. M., McMillen, I. C., Gentili, S., and Perry, V. E. A. (2011). Heifer nutrition intake during early- and mid-gestation programs adult offspring adiposity and mRNA expression of growth-related genes in adipose depots. Reproduction 141, 697–706.
Heifer nutrition intake during early- and mid-gestation programs adult offspring adiposity and mRNA expression of growth-related genes in adipose depots.CrossRef | 1:CAS:528:DC%2BC3MXmvFCis78%3D&md5=bb9ea69900d59ce658310aea77e13159CAS | open url image1

Minokoshi, Y., Kim, Y.-B., Peroni, O. D., Fryer, L. G. D., Müller, C., Carling, D., and Kahn, B. B. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–343.
Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase.CrossRef | 1:CAS:528:DC%2BD38Xptlamtw%3D%3D&md5=6a0e55b7bed3e439b6de3eae42795c7aCAS | open url image1

Mumbare, S. S., Maindarkar, G., Darade, R., Yenge, S., Tolani, M. K., and Patole, K. (2012). Maternal risk factors associated with term low birth weight neonates: a matched-pair case control study. Indian Pediatr. 49, 25–28.
Maternal risk factors associated with term low birth weight neonates: a matched-pair case control study.CrossRef | open url image1

Nafikov, R. A., and Beitz, D. C. (2007). Carbohydrate and lipid metabolism in farm animals. J. Nutr. 137, 702–705.
| 1:CAS:528:DC%2BD2sXisVygsLc%3D&md5=49fc5eb15f2ee3ee0bf046beadb9a2e9CAS | open url image1

Nobili, V., Marcellini, M., Marchesini, G., Vanni, E., Manco, M., Villani, A., and Bugianesi, E. (2007). Intrauterine growth retardation, insulin resistance, and nonalcoholic fatty liver disease in children. Diabetes Care 30, 2638–2640.
Intrauterine growth retardation, insulin resistance, and nonalcoholic fatty liver disease in children.CrossRef | open url image1

Nuñez, C. E., Rodrigues, V. S., Gomes, F. S., de Moura, R. F., Victorio, S. C., Bombassaro, B., Chaim, E. A., Pareja, J. C., Geloneze, B., Velloso, L. A., and Araujo, E. P. (2013). Defective regulation of adipose tissue autophagy in obesity. Int. J. Obes. (Lond.) 37, 1473–1480.
Defective regulation of adipose tissue autophagy in obesity.CrossRef | open url image1

Ohsumi, Y. (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2, 211–216.
Molecular dissection of autophagy: two ubiquitin-like systems.CrossRef | 1:CAS:528:DC%2BD3MXhvFyjtr8%3D&md5=baaf41eafdb37d76089dabc364dd9838CAS | open url image1

Ojha, S., Symonds, M. E., and Budge, H. (2015). Suboptimal maternal nutrition during early-to-mid gestation in the sheep enhances pericardial adiposity in the near-term fetus. Reprod. Fertil. Dev. 27, 1205–1212.
Suboptimal maternal nutrition during early-to-mid gestation in the sheep enhances pericardial adiposity in the near-term fetus.CrossRef | 1:CAS:528:DC%2BC2MXhs1Glu7bN&md5=b223bf8500ad2e61b3f4e6c5e05130c9CAS | open url image1

Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.-H., Iwakoshi, N. N., Ozdelen, E., Tuncman, G., Görgün, C., Glimcher, L. H., and Hotamisligil, G. S. (2004). Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461.
Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes.CrossRef | open url image1

Park, H.-R., Tomida, A., Sato, S., Tsukumo, Y., Yun, J., Yamori, T., Hayakawa, Y., Tsuruo, T., and Shin-ya, K. (2004). Effect on tumor cells of blocking survival response to glucose deprivation. J. Natl. Cancer Inst. 96, 1300–1310.
Effect on tumor cells of blocking survival response to glucose deprivation.CrossRef | 1:CAS:528:DC%2BD2cXnsVyht7g%3D&md5=42074a2431bf15f131f2b8e8ff788d09CAS | open url image1

Ravelli, A. C., van der Meulen, J. H., Michels, R. P. J., Osmond, C., Barker, D. J., Hales, C. N., and Bleker, O. P. (1998). Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177.
Glucose tolerance in adults after prenatal exposure to famine.CrossRef | 1:STN:280:DyaK1c7htFGhtw%3D%3D&md5=f558d5d8e6b19860c878a8e4fead5f40CAS | open url image1

Rich-Edwards, J. W., Colditz, G. A., Stampfer, M. J., Willett, W. C., Gillman, M. W., Hennekens, C. H., Speizer, F. E., and Manson, J. E. (1999). Birthweight and the risk for type 2 diabetes mellitus in adult women. Ann. Intern. Med. 130, 278–284.
Birthweight and the risk for type 2 diabetes mellitus in adult women.CrossRef | 1:STN:280:DyaK1M7kvF2lsQ%3D%3D&md5=18992be2f2d61b82ffb88dd1e9c801caCAS | open url image1

Sartori, C., Rimoldi, S. F., Rexhaj, E., Allemann, Y., and Scherrer, U. (2016). Epigenetics in cardiovascular regulation. In ‘Hypoxia’. (Eds R. C. Roach, P. H. Hackett, and P. D. Wagner.) pp. 55–62. (Springer: New York.)

Schröder, M., and Kaufman, R. J. (2005). The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789.
The mammalian unfolded protein response.CrossRef | open url image1

Sharkey, D., Gardner, D. S., Fainberg, H. P., Sebert, S., Bos, P., Wilson, V., Bell, R., Symonds, M. E., and Budge, H. (2009a). Maternal nutrient restriction during pregnancy differentially alters the unfolded protein response in adipose and renal tissue of obese juvenile offspring. FASEB J. 23, 1314–1324.
Maternal nutrient restriction during pregnancy differentially alters the unfolded protein response in adipose and renal tissue of obese juvenile offspring.CrossRef | 1:CAS:528:DC%2BD1MXlsFSnu7k%3D&md5=0b2418dbc1b5abc20e1ae688a68e6678CAS | open url image1

Sharkey, D., Symonds, M. E., and Budge, H. (2009b). Adipose tissue inflammation: developmental ontogeny and consequences of gestational nutrient restriction in offspring. Endocrinology 150, 3913–3920.
Adipose tissue inflammation: developmental ontogeny and consequences of gestational nutrient restriction in offspring.CrossRef | 1:CAS:528:DC%2BD1MXpsV2qsrg%3D&md5=c52bd6ce0adc6db55bb6d5772653b467CAS | open url image1

Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A. M., and Czaja, M. J. (2009). Autophagy regulates lipid metabolism. Nature 458, 1131–1135.
Autophagy regulates lipid metabolism.CrossRef | 1:CAS:528:DC%2BD1MXjvV2ks7s%3D&md5=75f6f4a54024318129d5911d425b6af1CAS | open url image1

Symonds, M. E., Dellschaft, N., Pope, M., Birtwistle, M., Alagal, R., Keisler, D., and Budge, H. (2016). Developmental programming, adiposity, and reproduction in ruminants. Theriogenology 86, 120–129.
Developmental programming, adiposity, and reproduction in ruminants.CrossRef | 1:STN:280:DC%2BC28bovFejuw%3D%3D&md5=df23467bf069b2c7c68b8117e94022f7CAS | open url image1

Trayhurn, P., Duncan, J. S., Hoggard, N., and Rayner, D. V. (1998). Regulation of leptin production: a dominant role for the sympathetic nervous system? Proc. Nutr. Soc. 57, 413–419.
Regulation of leptin production: a dominant role for the sympathetic nervous system?CrossRef | 1:CAS:528:DyaK1cXntFGiu74%3D&md5=75ec38ec8f008d81d9ead1cd54f7e973CAS | open url image1

Vernon, R. G. (1980). Lipid metabolism in the adipose tissue of ruminant animals. Prog. Lipid Res. 19, 23–106.
Lipid metabolism in the adipose tissue of ruminant animals.CrossRef | 1:CAS:528:DyaL3MXislyhsw%3D%3D&md5=1b4d44bb5f237f27c6109baec906f42eCAS | open url image1

Wallace, T. M., Levy, J. C., and Matthews, D. R. (2004). Use and abuse of HOMA modeling. Diabetes Care 27, 1487–1495.
Use and abuse of HOMA modeling.CrossRef | open url image1

Yacoub Wasef, S. Z., Robinson, K. A., Berkaw, M. N., and Buse, M. G. (2006). Glucose, dexamethasone, and the unfolded protein response regulate TRB3 mRNA expression in 3T3-L1 adipocytes and L6 myotubes. Am. J. Physiol. Endocrinol. Metab. 291, E1274–E1280.
Glucose, dexamethasone, and the unfolded protein response regulate TRB3 mRNA expression in 3T3-L1 adipocytes and L6 myotubes.CrossRef | open url image1

Yang, L., Li, P., Fu, S., Calay, E. S., and Hotamisligil, G. S. (2010). Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478.
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance.CrossRef | 1:CAS:528:DC%2BC3cXnsFyitrs%3D&md5=d09422491755263f08962bdcceeab22bCAS | open url image1

Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R. J., Nagata, K., and Mori, K. (2003). A time-dependent phase shift in the mammalian unfolded protein response. Dev. Cell 4, 265–271.
A time-dependent phase shift in the mammalian unfolded protein response.CrossRef | 1:CAS:528:DC%2BD3sXhsFKntrY%3D&md5=21a0cafd6a225cd0b54e37db9a70b941CAS | open url image1

Yoshinaga, M., Sameshima, K., Jougasaki, M., Yoshikawa, H., Tanaka, Y., Hashiguchi, J., Tahara, H., Ichiki, T., Shimizu, S., and Nakamura, K. (2006). Emergence of cardiovascular risk factors from mild obesity in Japanese elementary school children. Diabetes Care 29, 1408–1410.
Emergence of cardiovascular risk factors from mild obesity in Japanese elementary school children.CrossRef | open url image1

Zain, S. M., Mohamed, Z., Mahadeva, S., Cheah, P.-L., Rampal, S., Chin, K.-F., Mahfudz, A. S., Basu, R. C., Tan, H.-L., and Mohamed, R. (2013). Impact of leptin receptor gene variants on risk of non-alcoholic fatty liver disease and its interaction with adiponutrin gene. J. Gastroenterol. Hepatol. 28, 873–879.
Impact of leptin receptor gene variants on risk of non-alcoholic fatty liver disease and its interaction with adiponutrin gene.CrossRef | 1:CAS:528:DC%2BC3sXmslSmt7Y%3D&md5=db5de429276c3da2cfad9ffeb449c07eCAS | open url image1

Zhang, K., and Kaufman, R. J. (2004). Signaling the unfolded protein response from the endoplasmic reticulum. J. Biol. Chem. 279, 25935–25938.
Signaling the unfolded protein response from the endoplasmic reticulum.CrossRef | 1:CAS:528:DC%2BD2cXkvVWhtb8%3D&md5=b14c3c953a94f0d2e65ff130b9186ab3CAS | open url image1



Export Citation

View Altmetrics