Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The mitochondrial genome: how it drives fertility

Justin C. St. John A B , Kanokwan Srirattana A B , Te-Sha Tsai A B and Xin Sun A B
+ Author Affiliations
- Author Affiliations

A Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Vic. 3168, Australia.

B Department of Molecular and Translational Sciences, Monash University, Clayton, Vic. 3168, Australia.

C Corresponding author. Email: justin.stjohn@hudson.org.au

Reproduction, Fertility and Development 30(1) 118-139 https://doi.org/10.1071/RD17408
Published: 4 December 2017

Abstract

In mammalian species, the mitochondrial genome is between 16.2 and 16.7 kb in size and encodes key proteins associated with the cell’s major energy-generating apparatus, the electron transfer chain. The maternally inherited mitochondrial genome has, until recently, been thought to be only involved in the production of energy. In this review, we analyse how the mitochondrial genome influences the developing embryo and cellular differentiation, as well as fetal and offspring health and wellbeing. We make specific reference to two assisted reproductive technologies, namely mitochondrial supplementation and somatic cell nuclear transfer, and how modulating the mitochondrial content in the oocyte influences embryo viability and the potential to generate enhanced offspring for livestock production purposes. We also explain why it is important to ensure that the transmission of only one population of mitochondrial (mt) DNA is maintained through to the offspring and why two populations of genetically distinct mitochondrial genomes could be deleterious. Finally, we explain how mtDNA influences chromosomal gene expression patterns in developing embryos and cells primarily by modulating DNA methylation patterns through factors associated with the citric acid cycle. These factors can then modulate the ten–eleven translocation (TET) pathway, which, in turn, determines whether a cell is in a more or less DNA methylated state.

Additional keywords: DNA methylation, embryo, livestock production, mitochondrial DNA, mitochondrial haplotypes, mitochondrial supplementation, oocyte, somatic cell nuclear transfer.


References

Acton, B. M., Lai, I., Shang, X., Jurisicova, A., and Casper, R. F. (2007). Neutral mitochondrial heteroplasmy alters physiological function in mice. Biol. Reprod. 77, 569–576.
Neutral mitochondrial heteroplasmy alters physiological function in mice.CrossRef | 1:CAS:528:DC%2BD2sXpvFCrurc%3D&md5=5a749ed369015c093641c6cd5ed5a898CAS |

Agaronyan, K., Morozov, Y. I., Anikin, M., and Temiakov, D. (2015). Mitochondrial biology. Replication–transcription switch in human mitochondria. Science 347, 548–551.
Mitochondrial biology. Replication–transcription switch in human mitochondria.CrossRef | 1:CAS:528:DC%2BC2MXhsV2ns70%3D&md5=2e40993c145c61d351f2fa1990588a11CAS |

Amaral, A., Ramalho-Santos, J., and St John, J. C. (2007). The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm. Hum. Reprod. 22, 1585–1596.
The expression of polymerase gamma and mitochondrial transcription factor A and the regulation of mitochondrial DNA content in mature human sperm.CrossRef | 1:CAS:528:DC%2BD2sXot1ejt7c%3D&md5=571129ea8b74b95bbfe11154327afd5bCAS |

Anderson, S., de Bruijn, M. H., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G. (1982). Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 156, 683–717.
Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome.CrossRef | 1:CAS:528:DyaL38XltVCru7c%3D&md5=bcc8b9642a6ba6b7afbf2bbad43a4ba4CAS |

Archibald, J. M. (2015). Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25, R911–R921.
Endosymbiosis and eukaryotic cell evolution.CrossRef | 1:CAS:528:DC%2BC2MXhs1WjtrzF&md5=55e35b23d0957129b0f6ee2133cf4ec8CAS |

Baca, M., and Zamboni, L. (1967). The fine structure of human follicular oocytes. J. Ultrastruct. Res. 19, 354–381.
The fine structure of human follicular oocytes.CrossRef | 1:STN:280:DyaF1c%2FhtFGksA%3D%3D&md5=1642cca928c96a7afadf9571a882bd0fCAS |

Barritt, J., Willadsen, S., Brenner, C., and Cohen, J. (2001a). Cytoplasmic transfer in assisted reproduction. Hum. Reprod. Update 7, 428–435.
Cytoplasmic transfer in assisted reproduction.CrossRef | 1:CAS:528:DC%2BD3MXlvVKjtLs%3D&md5=41014a5074da73102a67861fb73af011CAS |

Barritt, J. A., Brenner, C. A., Malter, H. E., and Cohen, J. (2001b). Rebuttal: interooplasmic transfers in humans. Reprod. Biomed. Online 3, 47–48.
Rebuttal: interooplasmic transfers in humans.CrossRef |

Basiricò, L., Morera, P., Primi, V., Lacetera, N., Nardone, A., and Bernabucci, U. (2011). Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress Chaperones 16, 441–448.
Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows.CrossRef |

Beatty, D. T., Barnes, A., Taylor, E., Pethick, D., McCarthy, M., and Maloney, S. K. (2006). Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity. J. Anim. Sci. 84, 972–985.
Physiological responses of Bos taurus and Bos indicus cattle to prolonged, continuous heat and humidity.CrossRef | 1:CAS:528:DC%2BD28XjtlKkt7Y%3D&md5=a95e7addc13d8f602156d4fac2c89419CAS |

Beekman, M., Dowling, D. K., and Aanen, D. K. (2014). The costs of being male: are there sex-specific effects of uniparental mitochondrial inheritance? Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130440.
The costs of being male: are there sex-specific effects of uniparental mitochondrial inheritance?CrossRef |

Bhojwani, S., Alm, H., Torner, H., Kanitz, W., and Poehland, R. (2007). Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer. Theriogenology 67, 341–345.
Selection of developmentally competent oocytes through brilliant cresyl blue stain enhances blastocyst development rate after bovine nuclear transfer.CrossRef | 1:CAS:528:DC%2BD28Xhtlars7vE&md5=85305715cb80376331d39230570b70a4CAS |

Birky, C. W. (1995). Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc. Natl Acad. Sci. USA 92, 11331–11338.
Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution.CrossRef | 1:CAS:528:DyaK2MXpvVOgt7s%3D&md5=0b061b7f1d5b72b9d429e24362c4073dCAS |

Blaschke, K., Ebata, K. T., Karimi, M. M., Zepeda-Martinez, J. A., Goyal, P., Mahapatra, S., Tam, A., Laird, D. J., Hirst, M., Rao, A., Lorincz, M. C., and Ramalho-Santos, M. (2013). Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500, 222–226.
Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells.CrossRef | 1:CAS:528:DC%2BC3sXhtVKhu7bN&md5=eea3ccf1dc14c6d8a17392124ff9f722CAS |

Bogenhagen, D. F. (2012). Mitochondrial DNA nucleoid structure. Biochim. Biophys. Acta 1819, 914–920.
Mitochondrial DNA nucleoid structure.CrossRef | 1:CAS:528:DC%2BC38XhtVyktr%2FM&md5=aa09ad60e3374d7779bd550f30629fa7CAS |

Bolton, R. C., Frahm, R. R., Castree, J. W., and Coleman, S. W. (1987). Genotype × environment interactions involving proportion of Brahman breeding and season of birth. I. Calf growth to weaning. J. Anim. Sci. 65, 42–47.
Genotype × environment interactions involving proportion of Brahman breeding and season of birth. I. Calf growth to weaning.CrossRef | 1:STN:280:DyaL2s3nvFGksw%3D%3D&md5=b38a1b2a27ce840179d0e012aedf5f43CAS |

Boucret, L., Chao de la Barca, J. M., Moriniere, C., Desquiret, V., Ferre-L’Hotellier, V., Descamps, P., Marcaillou, C., Reynier, P., Procaccio, V., and May-Panloup, P. (2015). Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum. Reprod. 30, 1653–1664.
Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells.CrossRef | 1:CAS:528:DC%2BC2sXhs1ahsr%2FJ&md5=5051366c87773437393914a078ced777CAS |

Bowles, E. J., Campbell, K. H., and St John, J. C. (2007a). Nuclear transfer: preservation of a nuclear genome at the expense of its associated mtDNA genome(s). Curr. Top. Dev. Biol. 77, 251–290.
Nuclear transfer: preservation of a nuclear genome at the expense of its associated mtDNA genome(s).CrossRef | 1:CAS:528:DC%2BD2sXmt1Glurs%3D&md5=6b94b90246ea1f44f6ff83395170a22dCAS |

Bowles, E. J., Lee, J. H., Alberio, R., Lloyd, R. E., Stekel, D., Campbell, K. H., and St John, J. C. (2007b). Contrasting effects of in vitro fertilization and nuclear transfer on the expression of mtDNA replication factors. Genetics 176, 1511–1526.
Contrasting effects of in vitro fertilization and nuclear transfer on the expression of mtDNA replication factors.CrossRef | 1:CAS:528:DC%2BD2sXhtVeiurzO&md5=a3d7abbc5087ea4a81fcc609a8c65241CAS |

Bowles, E. J., Tecirlioglu, R. T., French, A. J., Holland, M. K., and St John, J. C. (2008). Mitochondrial DNA transmission and transcription after somatic cell fusion to one or more cytoplasts. Stem Cells 26, 775–782.
Mitochondrial DNA transmission and transcription after somatic cell fusion to one or more cytoplasts.CrossRef | 1:CAS:528:DC%2BD1cXltVKitLc%3D&md5=73e980f2d5e359744eeed2358a8e4c39CAS |

Bradley, D. G., Loftus, R. T., Cunningham, P., and MacHugh, D. E. (1998). Genetics and domestic cattle origins. Evol. Anthropol. 6, 79–86.
Genetics and domestic cattle origins.CrossRef |

Brenner, C. A., Barritt, J. A., Willadsen, S., and Cohen, J. (2000). Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertil. Steril. 74, 573–578.
Mitochondrial DNA heteroplasmy after human ooplasmic transplantation.CrossRef | 1:STN:280:DC%2BD3cvkvV2nsg%3D%3D&md5=855feda6d2f49488c694a5b14e2e62f0CAS |

Brinkman, K., and Kakuda, T. N. (2000). Mitochondrial toxicity of nucleoside analogue reverse transcriptase inhibitors: a looming obstacle for long-term antiretroviral therapy? Curr. Opin. Infect. Dis. 13, 5–11.
Mitochondrial toxicity of nucleoside analogue reverse transcriptase inhibitors: a looming obstacle for long-term antiretroviral therapy?CrossRef | 1:CAS:528:DC%2BD3cXhvFGitbY%3D&md5=b3d4ebf1c4bcd9ef076ed5c984bfce7dCAS |

Brinkman, K., ter Hofstede, H. J., Burger, D. M., Smeitink, J. A., and Koopmans, P. P. (1998). Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. AIDS 12, 1735–1744.
Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway.CrossRef | 1:CAS:528:DyaK1cXntVCqs7g%3D&md5=5d16a9da5379d4248a827a86a2cc30a0CAS |

Brown, W. M., George, M., and Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proc. Natl Acad. Sci. USA 76, 1967–1971.
Rapid evolution of animal mitochondrial DNA.CrossRef | 1:CAS:528:DyaE1MXktVWmsb8%3D&md5=b11bd1b8cdaca242fc35afb2e1f0b86fCAS |

Brüggerhoff, K., Zakhartchenko, V., Wenigerkind, H., Reichenbach, H. D., Prelle, K., Schernthaner, W., Alberio, R., Kuchenhoff, H., Stojkovic, M., Brem, G., Hiendleder, S., and Wolf, E. (2002). Bovine somatic cell nuclear transfer using recipient oocytes recovered by ovum pick-up: effect of maternal lineage of oocyte donors. Biol. Reprod. 66, 367–373.
Bovine somatic cell nuclear transfer using recipient oocytes recovered by ovum pick-up: effect of maternal lineage of oocyte donors.CrossRef |

Burgstaller, J. P., Schinogl, P., Dinnyes, A., Muller, M., and Steinborn, R. (2007). Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev. Biol. 7, 141.
Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer.CrossRef |

Cagnone, G. L. M., Tsai, T. S., Makanji, Y., Matthews, P., Gould, J., Bonkowski, M. S., Elgass, K. D., Wong, A. S. A., Wu, L. E., McKenzie, M., Sinclair, D. A. S., and St. John, J. C. (2016). Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Sci. Rep. 6, 23229.
Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency.CrossRef | 1:CAS:528:DC%2BC28Xks1emtLw%3D&md5=544c36d3b7e143daa5013732529197f0CAS |

Cao, L., Shitara, H., Horii, T., Nagao, Y., Imai, H., Abe, K., Hara, T., Hayashi, J., and Yonekawa, H. (2007). The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat. Genet. 39, 386–390.
The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells.CrossRef | 1:CAS:528:DC%2BD2sXitVOktr0%3D&md5=6bb4e63a9edbae0fd32aafb75e2b2849CAS |

Challah-Jacques, M., Chesne, P., and Renard, J. P. (2003). Production of cloned rabbits by somatic nuclear transfer. Cloning Stem Cells 5, 295–299.
Production of cloned rabbits by somatic nuclear transfer.CrossRef | 1:CAS:528:DC%2BD2cXislejsg%3D%3D&md5=4252e94a7ceb93ba43dc6bb74b5e86bbCAS |

Chen, S. H., Pascale, C., Jackson, M., Szvetecz, M. A., and Cohen, J. (2016). A limited survey-based uncontrolled follow-up study of children born after ooplasmic transplantation in a single centre. Reprod. Biomed. Online 33, 737–744.
A limited survey-based uncontrolled follow-up study of children born after ooplasmic transplantation in a single centre.CrossRef |

Chenoweth, P. J. (1994). Aspects of reproduction in female Bos indicus cattle: a review. Aust. Vet. J. 71, 422–426.
Aspects of reproduction in female Bos indicus cattle: a review.CrossRef | 1:STN:280:DyaK2M3hslSmtQ%3D%3D&md5=f4dfc840f0a141e3e6bc38709b5461f5CAS |

Chiaratti, M. R., Ferreira, C. R., Meirelles, F. V., Meo, S. C., Perecin, F., Smith, L. C., Ferraz, M. L., de Sa Filho, M. F., Gimenes, L. U., Baruselli, P. S., Gasparrini, B., and Garcia, J. M. (2010). Xenooplasmic transfer between buffalo and bovine enables development of homoplasmic offspring. Cell. Reprogram. 12, 231–236.
Xenooplasmic transfer between buffalo and bovine enables development of homoplasmic offspring.CrossRef | 1:CAS:528:DC%2BC3cXpsVOks70%3D&md5=8d0826f68b20909cb1d5eb953302dc9bCAS |

Cibelli, J. B., Stice, S. L., Golueke, P. J., Kane, J. J., Jerry, J., Blackwell, C., Ponce de Leon, F. A., and Robl, J. M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256–1258.
Cloned transgenic calves produced from nonquiescent fetal fibroblasts.CrossRef | 1:CAS:528:DyaK1cXjt1Gqt78%3D&md5=395c1f5531eb744911b941b179b22a9bCAS |

Cibelli, J. B., Campbell, K. H., Seidel, G. E., West, M. D., and Lanza, R. P. (2002). The health profile of cloned animals. Nat. Biotechnol. 20, 13–14.
The health profile of cloned animals.CrossRef | 1:CAS:528:DC%2BD38Xis12gsg%3D%3D&md5=9f06b7333a404d03a815bf6dc0c08240CAS |

Ciesielski, G. L., Bermek, O., Rosado-Ruiz, F. A., Hovde, S. L., Neitzke, O. J., Griffith, J. D., and Kaguni, L. S. (2015). Mitochondrial single-stranded DNA-binding proteins stimulate the activity of DNA polymerase gamma by organization of the template DNA. J. Biol. Chem. 290, 28697–28707.
Mitochondrial single-stranded DNA-binding proteins stimulate the activity of DNA polymerase gamma by organization of the template DNA.CrossRef | 1:CAS:528:DC%2BC2MXhvFWqtb3F&md5=307c0ac760ccb542f0a8fcaf7d6851e2CAS |

Clayton, D. A. (1992). Transcription and replication of animal mitochondrial DNAs. Int. Rev. Cytol. 141, 217–232.
Transcription and replication of animal mitochondrial DNAs.CrossRef | 1:CAS:528:DyaK3sXkt1Wgs7w%3D&md5=f7ec46157c307d547ec10433640a2ea4CAS |

Clayton, D. A. (1998). Nuclear–mitochondrial intergenomic communication. Biofactors 7, 203–205.
Nuclear–mitochondrial intergenomic communication.CrossRef | 1:CAS:528:DyaK1cXis1Ohs7w%3D&md5=718fbbac978f86d4552d61a20fa1761eCAS |

Cloonan, S. M., and Choi, A. M. (2012). Mitochondria: commanders of innate immunity and disease? Curr. Opin. Immunol. 24, 32–40.
Mitochondria: commanders of innate immunity and disease?CrossRef | 1:CAS:528:DC%2BC38XjtV2qsb4%3D&md5=4c6c1e7c11a984fe8050ffeb94c8f562CAS |

Cohen, J., Scott, R., Schimmel, T., Levron, J., and Willadsen, S. (1997). Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 350, 186–187.
Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs.CrossRef | 1:STN:280:DyaK2szptlOmtQ%3D%3D&md5=4435fc515275c6370e6a4980d83841b3CAS |

Cohen, T., Levin, L., and Mishmar, D. (2016). Ancient out-of-Africa mitochondrial DNA variants associate with distinct mitochondrial gene expression patterns. PLoS Genet. 12, e1006407.
Ancient out-of-Africa mitochondrial DNA variants associate with distinct mitochondrial gene expression patterns.CrossRef |

Coskun, P. E., Ruiz-Pesini, E., and Wallace, D. C. (2003). Control region mtDNA variants: longevity, climatic adaptation, and a forensic conundrum. Proc. Natl Acad. Sci. USA 100, 2174–2176.
Control region mtDNA variants: longevity, climatic adaptation, and a forensic conundrum.CrossRef | 1:CAS:528:DC%2BD3sXitVajt7s%3D&md5=01c9940a5c4b1165678d8b38ba786aedCAS |

Cosmides, L. M., and Tooby, J. (1981). Cytoplasmic inheritance and intragenomic conflict. J. Theor. Biol. 89, 83–129.
Cytoplasmic inheritance and intragenomic conflict.CrossRef | 1:CAS:528:DyaL3MXhs12rtbw%3D&md5=7bdebb70dd2c08fec31610e446a09354CAS |

Cree, L. M., Samuels, D. C., de Sousa Lopes, S. C., Rajasimha, H. K., Wonnapinij, P., Mann, J. R., Dahl, H. H., and Chinnery, P. F. (2008). A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat. Genet. 40, 249–254.
A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes.CrossRef | 1:CAS:528:DC%2BD1cXhsVSjsbs%3D&md5=7c0b82faeb31de04096fc70c1d858b05CAS |

D’Erchia, A. M., Atlante, A., Gadaleta, G., Pavesi, G., Chiara, M., De Virgilio, C., Manzari, C., Mastropasqua, F., Prazzoli, G. M., Picardi, E., Gissi, C., Horner, D., Reyes, A., Sbisa, E., Tullo, A., and Pesole, G. (2015). Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity. Mitochondrion 20, 13–21.
Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity.CrossRef | 1:CAS:528:DC%2BC2cXhvFSht73E&md5=b14d559c803e15e2efe097510df49f21CAS |

Derr, J. N., Hedrick, P. W., Halbert, N. D., Plough, L., Dobson, L. K., King, J., Duncan, C., Hunter, D. L., Cohen, N. D., and Hedgecock, D. (2012). Phenotypic effects of cattle mitochondrial DNA in American bison. Conserv. Biol. 26, 1130–1136.
Phenotypic effects of cattle mitochondrial DNA in American bison.CrossRef |

Desjardins, P., Frost, E., and Morais, R. (1985). Ethidium bromide-induced loss of mitochondrial DNA from primary chicken embryo fibroblasts. Mol. Cell. Biol. 5, 1163–1169.
Ethidium bromide-induced loss of mitochondrial DNA from primary chicken embryo fibroblasts.CrossRef | 1:CAS:528:DyaL2MXktFKmsro%3D&md5=6b28bd2d04621b4f80cfd59bc3f07198CAS |

Dickinson, A., Yeung, K. Y., Donoghue, J., Baker, M. J., Kelly, R. D., McKenzie, M., Johns, T. G., and St John, J. C. (2013). The regulation of mitochondrial DNA copy number in glioblastoma cells. Cell Death Differ. 20, 1644–1653.
The regulation of mitochondrial DNA copy number in glioblastoma cells.CrossRef | 1:CAS:528:DC%2BC3sXhslygu7nM&md5=2a007a6ccb1908b76ed692b5220b0158CAS |

Díez-Sánchez, C., Ruiz-Pesini, E., Lapeña, A. C., Montoya, J., Pérez-Martos, A., Enríquez, J. A., and López-Pérez, M. J. (2003). Mitochondrial DNA content of human spermatozoa. Biol. Reprod. 68, 180–185.
Mitochondrial DNA content of human spermatozoa.CrossRef |

Doro, M. G., Piras, D., Leoni, G. G., Casu, G., Vaccargiu, S., Parracciani, D., Naitana, S., Pirastu, M., and Novelletto, A. (2014). Phylogeny and patterns of diversity of goat mtDNA haplogroup A revealed by resequencing complete mitogenomes. PLoS One 9, e95969.
Phylogeny and patterns of diversity of goat mtDNA haplogroup A revealed by resequencing complete mitogenomes.CrossRef |

Duchen, M. R. (1999). Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death. J. Physiol. 516, 1–17.
Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signalling and cell death.CrossRef | 1:CAS:528:DyaK1MXjtFGksLw%3D&md5=94b1dd9e5daf2ea3a2a875f966c9d420CAS |

Edwards, C. J., Baird, J. F., and MacHugh, D. E. (2007). Taurine and zebu admixture in Near Eastern cattle: a comparison of mitochondrial, autosomal and Y-chromosomal data. Anim. Genet. 38, 520–524.
Taurine and zebu admixture in Near Eastern cattle: a comparison of mitochondrial, autosomal and Y-chromosomal data.CrossRef | 1:CAS:528:DC%2BD2sXht1ertr3J&md5=93df98c33140a8c321d7b905f9119a38CAS |

El Shourbagy, S. H., Spikings, E. C., Freitas, M., and St John, J. C. (2006). Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131, 233–245.
Mitochondria directly influence fertilisation outcome in the pig.CrossRef | 1:CAS:528:DC%2BD28XisFalsL4%3D&md5=365b097f63f7db0c8ab8029644a59a48CAS |

Eler, J. P., Silva, J. A., Ferraz, J. B., Dias, F., Oliveira, H. N., Evans, J. L., and Golden, B. L. (2002). Genetic evaluation of the probability of pregnancy at 14 months for Nellore heifers. J. Anim. Sci. 80, 951–954.
Genetic evaluation of the probability of pregnancy at 14 months for Nellore heifers.CrossRef | 1:CAS:528:DC%2BD38XmvV2itrY%3D&md5=90d2d783599248bc8f197538af228bcbCAS |

Facucho-Oliveira, J. M., Alderson, J., Spikings, E. C., Egginton, S., and St John, J. C. (2007). Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J. Cell Sci. 120, 4025–4034.
Mitochondrial DNA replication during differentiation of murine embryonic stem cells.CrossRef | 1:CAS:528:DC%2BD2sXhsVOru73K&md5=1a7adc4e1d23a381a2a3df8aa5a39bf7CAS |

Fakih, M., El Shmoury, M., Szeptycki, J., dela Cruz, D. B., Lux, C., Verjee, S., Burgess, C. M., Cohn, G. M., and Casper, R. F. (2015). The AUGMENTSM treatment: physician reported outcomes of the initial global patient experience. JFIV Reprod. Med. Genet. 3, e116.
The AUGMENTSM treatment: physician reported outcomes of the initial global patient experience.CrossRef |

Farr, C. L., Matsushima, Y., Lagina, A. T., Luo, N., and Kaguni, L. S. (2004). Physiological and biochemical defects in functional interactions of mitochondrial DNA polymerase and DNA-binding mutants of single-stranded DNA-binding protein. J. Biol. Chem. 279, 17047–17053.
Physiological and biochemical defects in functional interactions of mitochondrial DNA polymerase and DNA-binding mutants of single-stranded DNA-binding protein.CrossRef | 1:CAS:528:DC%2BD2cXjt1GgtrY%3D&md5=f1bb93c01a4652cd0f15ce5d219de440CAS |

Flood, M. R., and Wiebold, J. L. (1988). Glucose metabolism by preimplantation pig embryos. J. Reprod. Fertil. 84, 7–12.
Glucose metabolism by preimplantation pig embryos.CrossRef | 1:CAS:528:DyaL1cXlvVOqsrk%3D&md5=0b28cfbe447e9e77bfd87251812623ceCAS |

Folgerø, T., Bertheussen, K., Lindal, S., Torbergsen, T., and Øian, P. (1993). Mitochondrial disease and reduced sperm motility. Hum. Reprod. 8, 1863–1868.
Mitochondrial disease and reduced sperm motility.CrossRef |

Fragouli, E., Spath, K., Alfarawati, S., Kaper, F., Craig, A., Michel, C. E., Kokocinski, F., Cohen, J., Munne, S., and Wells, D. (2015). Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 11, e1005241.
Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential.CrossRef |

Frank, S. A., and Hurst, L. D. (1996). Mitochondria and male disease. Nature 383, 224.
Mitochondria and male disease.CrossRef | 1:CAS:528:DyaK28Xlsl2ksrY%3D&md5=bc0c88d402206c7ca2498d28bffe3b8bCAS |

Frantz, L. A., Schraiber, J. G., Madsen, O., Megens, H. J., Bosse, M., Paudel, Y., Semiadi, G., Meijaard, E., Li, N., Crooijmans, R. P., Archibald, A. L., Slatkin, M., Schook, L. B., Larson, G., and Groenen, M. A. (2013). Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biol. 14, R107.
Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus.CrossRef |

Frantz, L. A., Schraiber, J. G., Madsen, O., Megens, H. J., Cagan, A., Bosse, M., Paudel, Y., Crooijmans, R. P., Larson, G., and Groenen, M. A. (2015). Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat. Genet. 47, 1141–1148.
Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes.CrossRef | 1:CAS:528:DC%2BC2MXhsVWmu7bK&md5=3265fd74d97f1dfab44fcf74df1d5e41CAS |

Galli, C., Lagutina, I., Crotti, G., Colleoni, S., Turini, P., Ponderato, N., Duchi, R., and Lazzari, G. (2003). Pregnancy: a cloned horse born to its dam twin. Nature 424, 635.
Pregnancy: a cloned horse born to its dam twin.CrossRef | 1:CAS:528:DC%2BD3sXmtVektbc%3D&md5=7ce17e3291dada504b184da1ee665fb8CAS |

García-Ispierto, I., López-Gatius, F., Bech-Sabat, G., Santolaria, P., Yániz, J. L., Nogareda, C., De Rensis, F., and López-Béjar, M. (2007). Climate factors affecting conception rate of high producing dairy cows in northeastern Spain. Theriogenology 67, 1379–1385.
Climate factors affecting conception rate of high producing dairy cows in northeastern Spain.CrossRef |

Gaughan, J. B., Mader, T. L., Holt, S. M., Sullivan, M. L., and Hahn, G. L. (2010). Assessing the heat tolerance of 17 beef cattle genotypes. Int. J. Biometeorol. 54, 617–627.
Assessing the heat tolerance of 17 beef cattle genotypes.CrossRef | 1:STN:280:DC%2BC3cbntlSlsw%3D%3D&md5=2f524c84dc1bc788a3d8f2f278d7959aCAS |

Gemmell, N. J., Metcalf, V. J., and Allendorf, F. W. (2004). Mother’s curse: the effect of mtDNA on individual fitness and population viability. Trends Ecol. Evol. 19, 238–244.
Mother’s curse: the effect of mtDNA on individual fitness and population viability.CrossRef |

Gerber, A. S., Loggins, R., Kumar, S., and Dowling, T. E. (2001). Does nonneutral evolution shape observed patterns of DNA variation in animal mitochondrial genomes? Annu. Rev. Genet. 35, 539–566.
Does nonneutral evolution shape observed patterns of DNA variation in animal mitochondrial genomes?CrossRef | 1:CAS:528:DC%2BD38XlsVOn&md5=9b9c48ca17bb80e0ea209601c88ae443CAS |

Gómez, M. C., Biancardi, M. N., Jenkins, J. A., Dumas, C., Galiguis, J., Wang, G., and Earle Pope, C. (2012). Scriptaid and 5-aza-2′deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies black-footed cat cloned embryos. Reprod. Domest. Anim. 47, 130–135.
Scriptaid and 5-aza-2′deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies black-footed cat cloned embryos.CrossRef |

Gray, M. W. (1989). Origin and evolution of mitochondrial DNA. Annu. Rev. Cell Biol. 5, 25–50.
Origin and evolution of mitochondrial DNA.CrossRef | 1:CAS:528:DyaK3cXhslOqug%3D%3D&md5=90675fe47307bd4ac6dcf193bd8b7179CAS |

Gray, M. W. (2012). Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 4, a011403.
Mitochondrial evolution.CrossRef |

Gyllensten, U., Wharton, D., Josefsson, A., and Wilson, A. C. (1991). Paternal inheritance of mitochondrial DNA in mice. Nature 352, 255–257.
Paternal inheritance of mitochondrial DNA in mice.CrossRef | 1:CAS:528:DyaK3MXltlamu7c%3D&md5=f0ad7f6aa4fe98c92f5b3399e0f5e96bCAS |

Hammond, E. R., Green, M. P., Shelling, A. N., Berg, M. C., Peek, J. C., and Cree, L. M. (2016). Oocyte mitochondrial deletions and heteroplasmy in a bovine model of ageing and ovarian stimulation. Mol. Hum. Reprod. 22, 261–271.
Oocyte mitochondrial deletions and heteroplasmy in a bovine model of ageing and ovarian stimulation.CrossRef |

Hance, N., Ekstrand, M. I., and Trifunovic, A. (2005). Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis. Hum. Mol. Genet. 14, 1775–1783.
Mitochondrial DNA polymerase gamma is essential for mammalian embryogenesis.CrossRef | 1:CAS:528:DC%2BD2MXmvV2htLg%3D&md5=593314e564e1b94a091f3c668a93590cCAS |

Hansen, P. J. (2004). Physiological and cellular adaptations of zebu cattle to thermal stress. Anim. Reprod. Sci. 82–83, 349–360.
Physiological and cellular adaptations of zebu cattle to thermal stress.CrossRef |

Haseeb, A., Makki, M. S., and Haqqi, T. M. (2014). Modulation of ten–eleven translocation 1 (TET1), isocitrate dehydrogenase (IDH) expression, alpha-ketoglutarate (alpha-KG), and DNA hydroxymethylation levels by interleukin-1beta in primary human chondrocytes. J. Biol. Chem. 289, 6877–6885.
Modulation of ten–eleven translocation 1 (TET1), isocitrate dehydrogenase (IDH) expression, alpha-ketoglutarate (alpha-KG), and DNA hydroxymethylation levels by interleukin-1beta in primary human chondrocytes.CrossRef | 1:CAS:528:DC%2BC2cXjvVyqsLk%3D&md5=391d49e027178e7f5a22305410fd07d5CAS |

Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174.
Dating of the human–ape splitting by a molecular clock of mitochondrial DNA.CrossRef | 1:CAS:528:DyaL2MXmtFSns7g%3D&md5=d1643f52e3ea830ff1d85cebae43931cCAS |

Hayakawa, T., Noda, M., Yasuda, K., Yorifuji, H., Taniguchi, S., Miwa, I., Sakura, H., Terauchi, Y., Hayashi, J., Sharp, G. W., Kanazawa, Y., Akanuma, Y., Yazaki, Y., and Kadowaki, T. (1998). Ethidium bromide-induced inhibition of mitochondrial gene transcription suppresses glucose-stimulated insulin release in the mouse pancreatic beta-cell line betaHC9. J. Biol. Chem. 273, 20300–20307.
Ethidium bromide-induced inhibition of mitochondrial gene transcription suppresses glucose-stimulated insulin release in the mouse pancreatic beta-cell line betaHC9.CrossRef | 1:CAS:528:DyaK1cXlsVWgtL4%3D&md5=3d95d0c546aacb081b01e89afdf17cabCAS |

Hecht, N. B., Liem, H., Kleene, K. C., Distel, R. J., and Ho, S. M. (1984). Maternal inheritance of the mouse mitochondrial genome is not mediated by a loss or gross alteration of the paternal mitochondrial DNA or by methylation of the oocyte mitochondrial DNA. Dev. Biol. 102, 452–461.
Maternal inheritance of the mouse mitochondrial genome is not mediated by a loss or gross alteration of the paternal mitochondrial DNA or by methylation of the oocyte mitochondrial DNA.CrossRef | 1:CAS:528:DyaL2cXktVCmtb0%3D&md5=929a20248a8e7f8271dbbd2be05c786cCAS |

Hernández-Cerón, J., Chase, C. C., and Hansen, P. J. (2004). Differences in heat tolerance between preimplantation embryos from Brahman, Romosinuano, and Angus breeds. J. Dairy Sci. 87, 53–58.
Differences in heat tolerance between preimplantation embryos from Brahman, Romosinuano, and Angus breeds.CrossRef |

Hiendleder, S., Lewalski, H., Wassmuth, R., and Janke, A. (1998). The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype. J. Mol. Evol. 47, 441–448.
The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype.CrossRef | 1:CAS:528:DyaK1cXms1WlsLk%3D&md5=c2d296b1a61aeaf83e793f4d28ff0e8fCAS |

Hiendleder, S., Zakhartchenko, V., Wenigerkind, H., Reichenbach, H. D., Brüggerhoff, K., Prelle, K., Brem, G., Stojkovic, M., and Wolf, E. (2003). Heteroplasmy in bovine fetuses produced by intra- and inter-subspecific somatic cell nuclear transfer: neutral segregation of nuclear donor mitochondrial DNA in various tissues and evidence for recipient cow mitochondria in fetal blood. Biol. Reprod. 68, 159–166.
Heteroplasmy in bovine fetuses produced by intra- and inter-subspecific somatic cell nuclear transfer: neutral segregation of nuclear donor mitochondrial DNA in various tissues and evidence for recipient cow mitochondria in fetal blood.CrossRef | 1:CAS:528:DC%2BD3sXjtV2q&md5=f3fdb7d66e89548c495641bc2c60298dCAS |

Hill, G. E. (2015). Mitonuclear ecology. Mol. Biol. Evol. 32, 1917–1927.
Mitonuclear ecology.CrossRef | 1:CAS:528:DC%2BC28XhtlGrsL3K&md5=054f1a491b1596c4fbe88fa34fd105acCAS |

Hosseinzadeh Colagar, A., and Karimi, F. (2014). Large scale deletions of the mitochondrial DNA in astheno, asthenoterato and oligoasthenoterato-spermic men. Mitochondrial DNA 25, 321–328.
Large scale deletions of the mitochondrial DNA in astheno, asthenoterato and oligoasthenoterato-spermic men.CrossRef | 1:CAS:528:DC%2BC2cXhtFCks73P&md5=f14503226e1a616233b063de6e237b85CAS |

Houghton, F. D. (2006). Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation 74, 11–18.
Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst.CrossRef | 1:CAS:528:DC%2BD28XjtVeks78%3D&md5=c4eef1a30c4c3b2e12d1d5ad8ae698a6CAS |

Hua, S., Zhang, Y., Li, X. C., Ma, L. B., Cao, J. W., Dai, J. P., and Li, R. (2007). Effects of granulosa cell mitochondria transfer on the early development of bovine embryos in vitro. Cloning Stem Cells 9, 237–246.
Effects of granulosa cell mitochondria transfer on the early development of bovine embryos in vitro.CrossRef | 1:CAS:528:DC%2BD2sXms1Wgtrc%3D&md5=677e6d48833def9797fdebc07debbdb0CAS |

Huang, C. C., Cheng, T. C., Chang, H. H., Chang, C. C., Chen, C. I., Liu, J., and Lee, M. S. (1999). Birth after the injection of sperm and the cytoplasm of tripronucleate zygotes into metaphase II oocytes in patients with repeated implantation failure after assisted fertilization procedures. Fertil. Steril. 72, 702–706.
Birth after the injection of sperm and the cytoplasm of tripronucleate zygotes into metaphase II oocytes in patients with repeated implantation failure after assisted fertilization procedures.CrossRef | 1:STN:280:DyaK1MvkvFChtg%3D%3D&md5=fd607708c81a136ab0ae8ba801b4e2b3CAS |

Hurst, L. D., and Hamilton, W. D. (1992). Cytoplasmic fusion and the nature of sexes. Proc. Biol. Sci. 247, 189–194.
Cytoplasmic fusion and the nature of sexes.CrossRef |

Hwang, S., Kwak, S. H., Bhak, J., Kang, H. S., Lee, Y. R., Koo, B. K., Park, K. S., Lee, H. K., and Cho, Y. M. (2011). Gene expression pattern in transmitochondrial cytoplasmic hybrid cells harboring type 2 diabetes-associated mitochondrial DNA haplogroups. PLoS One 6, e22116.
Gene expression pattern in transmitochondrial cytoplasmic hybrid cells harboring type 2 diabetes-associated mitochondrial DNA haplogroups.CrossRef | 1:CAS:528:DC%2BC3MXhtVShtL3J&md5=a5198e4d33aa864f13b6277bbbcc31acCAS |

Innocenti, P., Morrow, E. H., and Dowling, D. K. (2011). Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332, 845–848.
Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution.CrossRef | 1:CAS:528:DC%2BC3MXlslyls7c%3D&md5=2bdd29f7ddeb3019c7105b4ad070acd8CAS |

Jansen, R. P. S. (2000). Germline passage of mitochondria: quantitative considerations and possible embryological sequelae. Hum. Reprod. 15, 112–128.
Germline passage of mitochondria: quantitative considerations and possible embryological sequelae.CrossRef |

Jansen, R. P., and de Boer, K. (1998). The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol. Cell. Endocrinol. 145, 81–88.
The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate.CrossRef | 1:CAS:528:DyaK1cXnt1eitrY%3D&md5=95d76b96cb601caa5fde1eb976d7e390CAS |

Jenuth, J. P., Peterson, A. C., and Shoubridge, E. A. (1997). Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat. Genet. 16, 93–95.
Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice.CrossRef | 1:CAS:528:DyaK2sXivFKhsbk%3D&md5=d6477259d48b15b1d762c0905f27e07dCAS |

Ji, F., Sharpley, M. S., Derbeneva, O., Alves, L. S., Qian, P., Wang, Y., Chalkia, D., Lvova, M., Xu, J., Yao, W., Simon, M., Platt, J., Xu, S., Angelin, A., Davila, A., Huang, T., Wang, P. H., Chuang, L. M., Moore, L. G., Qian, G., and Wallace, D. C. (2012). Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proc. Natl Acad. Sci. USA 109, 7391–7396.
Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans.CrossRef | 1:CAS:528:DC%2BC38XnsVGnsb4%3D&md5=6308801b17409557fd40774dcb6d361fCAS |

Jiang, Y., Kelly, R., Peters, A., Fulka, H., Dickinson, A., Mitchell, D. A., and St John, J. C. (2011). Interspecies somatic cell nuclear transfer is dependent on compatible mitochondrial DNA and reprogramming factors. PLoS One 6, e14805.
Interspecies somatic cell nuclear transfer is dependent on compatible mitochondrial DNA and reprogramming factors.CrossRef | 1:CAS:528:DC%2BC3MXls1SmsLw%3D&md5=876d391c5a8e4d6ef4ec047a7d8dd61bCAS |

Kaipparettu, B. A., Ma, Y., and Wong, L. J. (2010). Functional effects of cancer mitochondria on energy metabolism and tumorigenesis: utility of transmitochondrial cybrids. Ann. N. Y. Acad. Sci. 1201, 137–146.
Functional effects of cancer mitochondria on energy metabolism and tumorigenesis: utility of transmitochondrial cybrids.CrossRef | 1:CAS:528:DC%2BC3cXhtFegsLvI&md5=7482e3a7c07e9cd35218e32da5fd48aaCAS |

Kao, S., Chao, H. T., and Wei, Y. H. (1995). Mitochondrial deoxyribonucleic acid 4977-bp deletion is associated with diminished fertility and motility of human sperm. Biol. Reprod. 52, 729–736.
Mitochondrial deoxyribonucleic acid 4977-bp deletion is associated with diminished fertility and motility of human sperm.CrossRef | 1:CAS:528:DyaK2MXksFWhtrc%3D&md5=5e87059332376b88a05b996a002ceb4bCAS |

Keefer, C. L., Baldassarre, H., Keyston, R., Wang, B., Bhatia, B., Bilodeau, A. S., Zhou, J. F., Leduc, M., Downey, B. R., Lazaris, A., and Karatzas, C. N. (2001). Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol. Reprod. 64, 849–856.
Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes.CrossRef | 1:CAS:528:DC%2BD3MXhsVKjtr4%3D&md5=105d452a92e80a3bee839f9734c2d9f4CAS |

Kelly, T. K., De Carvalho, D. D., and Jones, P. A. (2010). Epigenetic modifications as therapeutic targets. Nat. Biotechnol. 28, 1069–1078.
Epigenetic modifications as therapeutic targets.CrossRef | 1:CAS:528:DC%2BC3cXht1yjs7bJ&md5=e6a76d73ca8882c49f3138b409bdb1e8CAS |

Kelly, R. D., Mahmud, A., McKenzie, M., Trounce, I. A., and St John, J. C. (2012). Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Res. 40, 10124–10138.
Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A.CrossRef | 1:CAS:528:DC%2BC38Xhs1WqtrvI&md5=b7c92af67f35aa92aa212c300e669f70CAS |

Kelly, R. D., Rodda, A. E., Dickinson, A., Mahmud, A., Nefzger, C. M., Lee, W., Forsythe, J. S., Polo, J. M., Trounce, I. A., McKenzie, M., Nisbet, D. R., and St John, J. C. (2013a). Mitochondrial DNA haplotypes define gene expression patterns in pluripotent and differentiating embryonic stem cells. Stem Cells 31, 703–716.
Mitochondrial DNA haplotypes define gene expression patterns in pluripotent and differentiating embryonic stem cells.CrossRef | 1:CAS:528:DC%2BC3sXms1Gmtr0%3D&md5=77f20ff61f64dead5a161f7858ed6644CAS |

Kelly, R. D., Sumer, H., McKenzie, M., Facucho-Oliveira, J., Trounce, I. A., Verma, P. J., and St John, J. C. (2013b). The effects of nuclear reprogramming on mitochondrial DNA replication. Stem Cell Rev. 9, 1–15.
The effects of nuclear reprogramming on mitochondrial DNA replication.CrossRef | 1:CAS:528:DC%2BC3sXit1ejsLw%3D&md5=7ec3c152ff89b1ffe1f42364f0ac9e44CAS |

Kenchington, E. L., Hamilton, L., Cogswell, A., and Zouros, E. (2009). Paternal mtDNA and maleness are co-inherited but not causally linked in mytilid mussels. PLoS One 4, e6976.
Paternal mtDNA and maleness are co-inherited but not causally linked in mytilid mussels.CrossRef |

Korhonen, J. A., Gaspari, M., and Falkenberg, M. (2003). TWINKLE has 5′ → 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J. Biol. Chem. 278, 48627–48632.
TWINKLE has 5′ → 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein.CrossRef | 1:CAS:528:DC%2BD3sXptlGkt7s%3D&md5=ce72dba90ac432fb41316dcad5bb1dacCAS |

Krisher, R. L., and Prather, R. S. (2012). A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79, 311–320.
A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation.CrossRef | 1:CAS:528:DC%2BC38XlsFygs7Y%3D&md5=a08c7ae5b31029fa346295ef2c4dfd48CAS |

Kucej, M., and Butow, R. A. (2007). Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol. 17, 586–592.
Evolutionary tinkering with mitochondrial nucleoids.CrossRef | 1:CAS:528:DC%2BD2sXhtlGgs7fJ&md5=9f8af80bff3e26fd1b012ef5948ecea7CAS |

Lanzendorf, S. E., Mayer, J. F., Toner, J., Oehninger, S., Saffan, D. S., and Muasher, S. (1999). Pregnancy following transfer of ooplasm from cryopreserved–thawed donor oocytes into recipient oocytes. Fertil. Steril. 71, 575–577.
Pregnancy following transfer of ooplasm from cryopreserved–thawed donor oocytes into recipient oocytes.CrossRef | 1:STN:280:DyaK1M7mtlKrtA%3D%3D&md5=62b930d7923a0fefcc43ba4503102838CAS |

Larsson, N. G., Garman, J. D., Oldfors, A., Barsh, G. S., and Clayton, D. A. (1996). A single mouse gene encodes the mitochondrial transcription factor A and a testis-specific nuclear HMG-box protein. Nat. Genet. 13, 296–302.
A single mouse gene encodes the mitochondrial transcription factor A and a testis-specific nuclear HMG-box protein.CrossRef | 1:CAS:528:DyaK28XktVegtr0%3D&md5=a0b61a7e75c2ee9557ac7191ec6f29f9CAS |

Larsson, N. G., Wang, J., Wilhelmsson, H., Oldfors, A., Rustin, P., Lewandoski, M., Barsh, G. S., and Clayton, D. A. (1998). Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236.
Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice.CrossRef | 1:CAS:528:DyaK1cXhtlKktL8%3D&md5=4b21d908988200e7f9c991a8d033c871CAS |

Latorre-Pellicer, A., Moreno-Loshuertos, R., Lechuga-Vieco, A. V., Sanchez-Cabo, F., Torroja, C., Acin-Perez, R., Calvo, E., Aix, E., Gonzalez-Guerra, A., Logan, A., Bernad-Miana, M. L., Romanos, E., Cruz, R., Cogliati, S., Sobrino, B., Carracedo, A., Perez-Martos, A., Fernandez-Silva, P., Ruiz-Cabello, J., Murphy, M. P., Flores, I., Vazquez, J., and Enriquez, J. A. (2016). Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565.
Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing.CrossRef | 1:CAS:528:DC%2BC28XhtFahtrnP&md5=804d3c5303e37a7ec3afa48cdb23cc9cCAS |

Leahy, A., Xiong, J. W., Kuhnert, F., and Stuhlmann, H. (1999). Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. J. Exp. Zool. 284, 67–81.
Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation.CrossRef | 1:STN:280:DyaK1M3pslehtg%3D%3D&md5=b3d9207e810f75bf3e7cd8e742c6f621CAS |

Leary, S. C., Battersby, B. J., Hansford, R. G., and Moyes, C. D. (1998). Interactions between bioenergetics and mitochondrial biogenesis. Biochim. Biophys. Acta 1365, 522–530.
Interactions between bioenergetics and mitochondrial biogenesis.CrossRef | 1:CAS:528:DyaK1cXks1Kkurs%3D&md5=85aa88331f5980ad05ca520e5ee172b4CAS |

Lee, W. T., and St John, J. (2015). The control of mitochondrial DNA replication during development and tumorigenesis. Ann. N. Y. Acad. Sci. 1350, 95–106.
The control of mitochondrial DNA replication during development and tumorigenesis.CrossRef | 1:CAS:528:DC%2BC2MXhs1CqtrrM&md5=7ff99f5f31675172e86e45793ebcafd7CAS |

Lee, J. H., Peters, A., Fisher, P., Bowles, E. J., St John, J. C., and Campbell, K. H. (2010). Generation of mtDNA homoplasmic cloned lambs. Cell. Reprogram. 12, 347–355.
Generation of mtDNA homoplasmic cloned lambs.CrossRef | 1:CAS:528:DC%2BC3cXpsVOksL0%3D&md5=f61cc06b805bf2b1d0805c87514b9c62CAS |

Lee, W., Johnson, J., Gough, D. J., Donoghue, J., Cagnone, G. L. M., Vaghjiani, V., Brown, K. A., Johns, T. G., and St. John, J. C. (2015). Mitochondrial DNA copy number is regulated by DNA methylation and demethylation of POLGA in stem and cancer cells and their differentiated progeny. Cell Death Dis. 6, e1664.
Mitochondrial DNA copy number is regulated by DNA methylation and demethylation of POLGA in stem and cancer cells and their differentiated progeny.CrossRef | 1:CAS:528:DC%2BC2MXjtVyltr8%3D&md5=b8d0c6f2d999b62e47f61b0b4abf7c04CAS |

Lee, W. T. Y., Cain, J. E., Cuddihy, A., Johnson, J., Dickinson, A., Yeung, K. Y., Kumar, B., Johns, T. G., Watkins, D. N., Spencer, A., and St John, J. C. (2016). Mitochondrial DNA plasticity is an essential inducer of tumorigenesis. Cell Death Dis. 2, 16016.
Mitochondrial DNA plasticity is an essential inducer of tumorigenesis.CrossRef | 1:CAS:528:DC%2BC28Xht1ais7rE&md5=07b366cd6ed136d90cccd328ab53cbf2CAS |

Lee, W. T., Sun, X., Tsai, T.-S., Johnson, J. L., Gould, J. A., Garama, D. J., Gough, D. J., McKenzie, M., Trounce, I. A., and St John, J. C. (2017). Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns. Cell Death Discov. 3, 17062.
Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns.CrossRef | 1:CAS:528:DC%2BC2sXhsVKlu7bL&md5=b13e09eb5e30bb58e5f8d1cb795137f0CAS |

Leese, H. J., Sturmey, R. G., Baumann, C. G., and McEvoy, T. G. (2007). Embryo viability and metabolism: obeying the quiet rules. Hum. Reprod. 22, 3047–3050.
Embryo viability and metabolism: obeying the quiet rules.CrossRef |

Legros, F., Malka, F., Frachon, P., Lombes, A., and Rojo, M. (2004). Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 117, 2653–2662.
Organization and dynamics of human mitochondrial DNA.CrossRef | 1:CAS:528:DC%2BD2cXlvFehtrk%3D&md5=83b65f8ad12ee350601267fbd1783aeeCAS |

Lestienne, P., Reynier, P., Chretien, M. F., Penisson-Besnier, I., Malthiery, Y., and Rohmer, V. (1997). Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements. Mol. Hum. Reprod. 3, 811–814.
Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements.CrossRef | 1:CAS:528:DyaK2sXntFClsLY%3D&md5=b1f4c6be95edf38c40886153bb751e32CAS |

Li, R., Wen, B., Zhao, H., Ouyang, N., Ou, S., Wang, W., Han, J., and Yang, D. (2017). Embryo development after mitochondrial supplementation from induced pluripotent stem cells. J. Assist. Reprod. Genet. 34, 1027–1033.
Embryo development after mitochondrial supplementation from induced pluripotent stem cells.CrossRef |

Lirón, J. P., Bravi, C. M., Mirol, P. M., Peral-García, P., and Giovambattista, G. (2006). African matrilineages in American Creole cattle: evidence of two independent continental sources. Anim. Genet. 37, 379–382.
African matrilineages in American Creole cattle: evidence of two independent continental sources.CrossRef |

Liu, Y., Li, D., Li, H., Zhou, X., and Wang, G. (2011). A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows. Mol. Biol. Rep. 38, 83–88.
A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows.CrossRef | 1:CAS:528:DC%2BC3cXhsFSmtLzN&md5=beb8c8cce8639aa1fa9f412f115a39b8CAS |

Lloyd, R. E., Lee, J. H., Alberio, R., Bowles, E. J., Ramalho-Santos, J., Campbell, K. H., and St John, J. C. (2006). Aberrant nucleo-cytoplasmic cross-talk results in donor cell mtDNA persistence in cloned embryos. Genetics 172, 2515–2527.
Aberrant nucleo-cytoplasmic cross-talk results in donor cell mtDNA persistence in cloned embryos.CrossRef | 1:CAS:528:DC%2BD28XkvFOgtL4%3D&md5=2b4862a22285def80d3a144615dd0e6cCAS |

Ma, H., Marti Gutierrez, N., Morey, R., Van Dyken, C., Kang, E., Hayama, T., Lee, Y., Li, Y., Tippner-Hedges, R., Wolf, D. P., Laurent, L. C., and Mitalipov, S. (2016). Incompatibility between nuclear and mitochondrial genomes contributes to an interspecies reproductive barrier. Cell Metab. 24, 283–294.
Incompatibility between nuclear and mitochondrial genomes contributes to an interspecies reproductive barrier.CrossRef | 1:CAS:528:DC%2BC28XhtFOlt73P&md5=ff39a9b4b274fffcd48b6add3976a7d0CAS |

Macháty, Z., Thompson, J. G., Abeydeera, L. R., Day, B. N., and Prather, R. S. (2001). Inhibitors of mitochondrial ATP production at the time of compaction improve development of in vitro produced porcine embryos. Mol. Reprod. Dev. 58, 39–44.
Inhibitors of mitochondrial ATP production at the time of compaction improve development of in vitro produced porcine embryos.CrossRef |

Magee, D. A., MacHugh, D. E., and Edwards, C. J. (2014). Interrogation of modern and ancient genomes reveals the complex domestic history of cattle. Anim. Front. 4, 7–22.
Interrogation of modern and ancient genomes reveals the complex domestic history of cattle.CrossRef |

Mannen, H., Tsuji, S., Loftus, R. T., and Bradley, D. G. (1998). Mitochondrial DNA variation and evolution of Japanese black cattle (Bos taurus). Genetics 150, 1169–1175.
| 1:CAS:528:DyaK1cXnsFCntLc%3D&md5=d7a7ac16e4d9763da4f544f59d563565CAS |

Mannen, H., Morimoto, M., Oyama, K., Mukai, F., and Tsuji, S. (2003). Identification of mitochondrial DNA substitutions related to meat quality in Japanese Black cattle12. J. Anim. Sci. 81, 68–73.
Identification of mitochondrial DNA substitutions related to meat quality in Japanese Black cattle12.CrossRef | 1:CAS:528:DC%2BD3sXhtFagsL8%3D&md5=b39271eb3ec87cdce07fcdca4ff85dc6CAS |

Martin, L. C., Brinks, J. S., Bourdon, R. M., and Cundiff, L. V. (1992). Genetic effects on beef heifer puberty and subsequent reproduction. J. Anim. Sci. 70, 4006–4017.
Genetic effects on beef heifer puberty and subsequent reproduction.CrossRef | 1:STN:280:DyaK3s7hsFWisQ%3D%3D&md5=e5fa3add085762e6961a5c21c478ceb7CAS |

Martin, W. F., Garg, S., and Zimorski, V. (2015). Endosymbiotic theories for eukaryote origin. Philos. Trans. R Soc. Lond. B Biol. Sci. 370, 20140330.
Endosymbiotic theories for eukaryote origin.CrossRef |

Martinez, F., Olvera-Sanchez, S., Esparza-Perusquia, M., Gomez-Chang, E., and Flores-Herrera, O. (2015). Multiple functions of syncytiotrophoblast mitochondria. Steroids 103, 11–22.
Multiple functions of syncytiotrophoblast mitochondria.CrossRef | 1:CAS:528:DC%2BC2MXhs1SltbzF&md5=5ae93f9c12e89d3cb29b0fe875b7d584CAS |

Martínez-Reyes, I., Diebold, L. P., Kong, H., Schieber, M., Huang, H., Hensley, C. T., Mehta, M. M., Wang, T., Santos, J. H., Woychik, R., Dufour, E., Spelbrink, J. N., Weinberg, S. E., Zhao, Y., DeBerardinis, R. J., and Chandel, N. S. (2016). TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions. Mol. Cell 61, 199–209.
TCA cycle and mitochondrial membrane potential are necessary for diverse biological functions.CrossRef |

May-Panloup, P., Chretien, M. F., Savagner, F., Vasseur, C., Jean, M., Malthiery, Y., and Reynier, P. (2003). Increased sperm mitochondrial DNA content in male infertility. Hum. Reprod. 18, 550–556.
Increased sperm mitochondrial DNA content in male infertility.CrossRef | 1:CAS:528:DC%2BD3sXit1yrtb4%3D&md5=bac1bdfa13e3d89b2cb10f0feaa20e67CAS |

May-Panloup, P., Chretien, M. F., Jacques, C., Vasseur, C., Malthiery, Y., and Reynier, P. (2005a). Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum. Reprod. 20, 593–597.
Low oocyte mitochondrial DNA content in ovarian insufficiency.CrossRef | 1:CAS:528:DC%2BD2MXhsFSgsbc%3D&md5=e51644aa8269378b7a2645c2ad02e0f6CAS |

May-Panloup, P., Vignon, X., Chretien, M. F., Heyman, Y., Tamassia, M., Malthiery, Y., and Reynier, P. (2005b). Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod. Biol. Endocrinol. 3, 65.
Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors.CrossRef |

McConnell, J. M., and Petrie, L. (2004). Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors. Reprod. Biomed. Online 9, 418–424.
Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors.CrossRef | 1:CAS:528:DC%2BD2cXptlKqsLk%3D&md5=9640ebbfbfe2a8072cb9f3cc1d411a2fCAS |

McFarland, R., Taylor, R. W., and Turnbull, D. M. (2007). Mitochondrial disease – its impact, etiology, and pathology. Curr. Top. Dev. Biol. 77, 113–155.
Mitochondrial disease – its impact, etiology, and pathology.CrossRef | 1:CAS:528:DC%2BD2sXmt1Gltbg%3D&md5=88ed1903de30b30c86610040fe9a66a6CAS |

McKenzie, M., and Trounce, I. (2000). Expression of Rattus norvegicus mtDNA in Mus musculus cells results in multiple respiratory chain defects. J. Biol. Chem. 275, 31514–31519.
Expression of Rattus norvegicus mtDNA in Mus musculus cells results in multiple respiratory chain defects.CrossRef | 1:CAS:528:DC%2BD3cXntlCitLc%3D&md5=c148dba18437d68244f35557213eaaf9CAS |

McKenzie, M., Chiotis, M., Pinkert, C. A., and Trounce, I. A. (2003). Functional respiratory chain analyses in murid xenomitochondrial cybrids expose coevolutionary constraints of cytochrome b and nuclear subunits of complex III. Mol. Biol. Evol. 20, 1117–1124.
Functional respiratory chain analyses in murid xenomitochondrial cybrids expose coevolutionary constraints of cytochrome b and nuclear subunits of complex III.CrossRef | 1:CAS:528:DC%2BD3sXltlemsr4%3D&md5=8f58408f5100500e0dc2d66cfb2b2275CAS |

Meirelles, F. V., Bordignon, V., Watanabe, Y., Watanabe, M., Dayan, A., Lobo, R. B., Garcia, J. M., and Smith, L. C. (2001). Complete replacement of the mitochondrial genotype in a Bos indicus calf reconstructed by nuclear transfer to a Bos taurus oocyte. Genetics 158, 351–356.
| 1:CAS:528:DC%2BD3MXkt1Ojsbg%3D&md5=3ff22dd13f51b66817a32b34be0c7e44CAS |

Monlun, M., Hyernard, C., Blanco, P., Lartigue, L., and Faustin, B. (2017). Mitochondria as molecular platforms integrating multiple innate immune signalings. J. Mol. Biol. 429, 1–13.
Mitochondria as molecular platforms integrating multiple innate immune signalings.CrossRef | 1:CAS:528:DC%2BC28Xhsl2itb7M&md5=a48f23a8265581a6c1ae6ee46548ecb0CAS |

Moyes, C. D., Battersby, B. J., and Leary, S. C. (1998). Regulation of muscle mitochondrial design. J. Exp. Biol. 201, 299–307.
| 1:CAS:528:DyaK1cXitVGmt70%3D&md5=12956658ffd0b57c4a83c3a2747340baCAS |

Murakoshi, Y., Sueoka, K., Takahashi, K., Sato, S., Sakurai, T., Tajima, H., and Yoshimura, Y. (2013). Embryo developmental capability and pregnancy outcome are related to the mitochondrial DNA copy number and ooplasmic volume. J. Assist. Reprod. Genet. 30, 1367–1375.
Embryo developmental capability and pregnancy outcome are related to the mitochondrial DNA copy number and ooplasmic volume.CrossRef |

Nagao, Y., Totsuka, Y., Atomi, Y., Kaneda, H., Lindahl, K. F., Imai, H., and Yonekawa, H. (1998). Decreased physical performance of congenic mice with mismatch between the nuclear and the mitochondrial genome. Genes Genet. Syst. 73, 21–27.
Decreased physical performance of congenic mice with mismatch between the nuclear and the mitochondrial genome.CrossRef | 1:STN:280:DyaK1c3gslyksQ%3D%3D&md5=ffbdb36f20af1263902eb1c9d1d02840CAS |

Nishimura, Y., Yoshinari, T., Naruse, K., Yamada, T., Sumi, K., Mitani, H., Higashiyama, T., and Kuroiwa, T. (2006). Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers. Proc. Natl Acad. Sci. USA 103, 1382–1387.
Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers.CrossRef | 1:CAS:528:DC%2BD28Xhs1Gnsr4%3D&md5=75be3b4958c4c9720d3e65c81cf96615CAS |

Oakes, C. C., La Salle, S., Smiraglia, D. J., Robaire, B., and Trasler, J. M. (2007). Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev. Biol. 307, 368–379.
Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells.CrossRef | 1:CAS:528:DC%2BD2sXnsFWltrY%3D&md5=277d53b9e4171513af7a6302b0b8187aCAS |

Paschal, J. C., Sanders, J. O., and Kerr, J. L. (1991). Calving and weaning characteristics of Angus-, Gray Brahman-, Gir-, Indu-Brazil-, Nellore-, and Red Brahman-sired F1 calves. J. Anim. Sci. 69, 2395–2402.
Calving and weaning characteristics of Angus-, Gray Brahman-, Gir-, Indu-Brazil-, Nellore-, and Red Brahman-sired F1 calves.CrossRef | 1:STN:280:DyaK3MzlvVSrsQ%3D%3D&md5=974a9e3ee0985d0d985c7fe2c6c87c79CAS |

Pfeiffer, T., Schuster, S., and Bonhoeffer, S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507.
Cooperation and competition in the evolution of ATP-producing pathways.CrossRef | 1:CAS:528:DC%2BD3MXjtVemsrw%3D&md5=2b4057e5eb3cd8a95b57e87dc992c634CAS |

Pick, J. L., Hutter, P., Ebneter, C., Ziegler, A. K., Giordano, M., and Tschirren, B. (2016). Artificial selection reveals the energetic expense of producing larger eggs. Front. Zool. 13, 38.
Artificial selection reveals the energetic expense of producing larger eggs.CrossRef |

Pikó, L., and Taylor, K. D. (1987). Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev. Biol. 123, 364–374.
Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos.CrossRef |

Pittis, A. A., and Gabaldon, T. (2016). Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104.
| 1:CAS:528:DC%2BC28XitFamu70%3D&md5=020573c08a3e02dde7ecd7271960104cCAS |

Pohjoismäki, J. L., Goffart, S., Taylor, R. W., Turnbull, D. M., Suomalainen, A., Jacobs, H. T., and Karhunen, P. J. (2010). Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number. PLoS One 5, e10426.
Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number.CrossRef |

Polejaeva, I. A., Chen, S. H., Vaught, T. D., Page, R. L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D. L., Colman, A., and Campbell, K. H. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90.
Cloned pigs produced by nuclear transfer from adult somatic cells.CrossRef | 1:STN:280:DC%2BD3cvkt12rug%3D%3D&md5=5fad9468d49bde94c6f86c105ed120b7CAS |

Poole, A. M., and Gribaldo, S. (2014). Eukaryotic origins: how and when was the mitochondrion acquired? Cold Spring Harb. Perspect. Biol. 6, a015990.
Eukaryotic origins: how and when was the mitochondrion acquired?CrossRef |

Pujol, M., Lopez-Bejar, M., and Paramio, M. T. (2004). Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test. Theriogenology 61, 735–744.
Developmental competence of heifer oocytes selected using the brilliant cresyl blue (BCB) test.CrossRef |

Quintana-Cabrera, R., Mehrotra, A., Rigoni, G., and Soriano, M. E. (2017). Who and how in the regulation of mitochondrial cristae shape and function. Biochem. Biophys. Res. Commun , .
Who and how in the regulation of mitochondrial cristae shape and function.CrossRef |

Reynier, P., May-Panloup, P., Chretien, M. F., Morgan, C. J., Jean, M., Savagner, F., Barriere, P., and Malthiery, Y. (2001). Mitochondrial DNA content affects the fertilizability of human oocytes. Mol. Hum. Reprod. 7, 425–429.
Mitochondrial DNA content affects the fertilizability of human oocytes.CrossRef | 1:CAS:528:DC%2BD3MXkt1CqsLg%3D&md5=6478d3f891ca61d2b4fe1642a4361a80CAS |

Roca, J., Martinez, E., Vazquez, J. M., and Lucas, X. (1998). Selection of immature pig oocytes for homologous in vitro penetration assays with the brilliant cresyl blue test. Reprod. Fertil. Dev. 10, 479–485.
Selection of immature pig oocytes for homologous in vitro penetration assays with the brilliant cresyl blue test.CrossRef | 1:STN:280:DC%2BD3c%2FltlGquw%3D%3D&md5=07fa3b9ab32936fe195fd970a19f5674CAS |

Rodríguez-González, E., López-Béjar, M., Velilla, E., and Paramio, M. T. (2002). Selection of prepubertal goat oocytes using the brilliant cresyl blue test. Theriogenology 57, 1397–1409.
Selection of prepubertal goat oocytes using the brilliant cresyl blue test.CrossRef |

Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V., and Wallace, D. C. (2004). Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303, 223–226.
Effects of purifying and adaptive selection on regional variation in human mtDNA.CrossRef | 1:CAS:528:DC%2BD2cXhtlGhsg%3D%3D&md5=5e890b4474a22afb44fd6d977693c418CAS |

Sagan, L. (1967). On the origin of mitosing cells. J. Theor. Biol. 14, 225–274.
On the origin of mitosing cells.CrossRef | 1:CAS:528:DyaF2sXksFShsbc%3D&md5=5c165676ce4e2ba57949d4c6d303cea4CAS |

Santos, T. A., El Shourbagy, S., and St John, J. C. (2006). Mitochondrial content reflects oocyte variability and fertilization outcome. Fertil. Steril. 85, 584–591.
Mitochondrial content reflects oocyte variability and fertilization outcome.CrossRef | 1:CAS:528:DC%2BD28XjsVChsr0%3D&md5=82ac78d3c74d2d82e9167d97d3d01abdCAS |

Sathananthan, H., Pera, M., and Trounson, A. (2002). The fine structure of human embryonic stem cells. Reprod. Biomed. Online 4, 56–61.
The fine structure of human embryonic stem cells.CrossRef |

Sato, M., and Sato, K. (2011). Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144.
Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos.CrossRef | 1:CAS:528:DC%2BC3MXhsV2mu7jN&md5=81e313ee920116fc01c6b1e0b153e5a6CAS |

Sato, M., and Sato, K. (2013). Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim. Biophys. Acta 1833, 1979–1984.
Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA.CrossRef | 1:CAS:528:DC%2BC3sXosVGntLw%3D&md5=72b02c9efcdd855ca4c1e9003d64e1e5CAS |

Sbisà, E., Tanzariello, F., Reyes, A., Pesole, G., and Saccone, C. (1997). Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications. Gene 205, 125–140.
Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications.CrossRef |

Schaefer, A. M., McFarland, R., Blakely, E. L., He, L., Whittaker, R. G., Taylor, R. W., Chinnery, P. F., and Turnbull, D. M. (2008). Prevalence of mitochondrial DNA disease in adults. Ann. Neurol. 63, 35–39.
Prevalence of mitochondrial DNA disease in adults.CrossRef | 1:CAS:528:DC%2BD1cXivF2itLo%3D&md5=c384e443bd67a74bebe669008a5b2d5eCAS |

Schultz, J., Waterstradt, R., Kantowski, T., Rickmann, A., Reinhardt, F., Sharoyko, V., Mulder, H., Tiedge, M., and Baltrusch, S. (2016). Precise expression of Fis1 is important for glucose responsiveness of beta cells. J. Endocrinol. 230, 81–91.
Precise expression of Fis1 is important for glucose responsiveness of beta cells.CrossRef | 1:CAS:528:DC%2BC28XhvFOrsrfL&md5=a3ee2fe0a4a27e778aced7cbbccc5cf7CAS |

Schutz, M. M., Freeman, A. E., Lindberg, G. L., Koehler, C. M., and Beitz, D. C. (1994). The effect of mitochondrial DNA on milk production and health of dairy cattle. Livest. Prod. Sci. 37, 283–295.
The effect of mitochondrial DNA on milk production and health of dairy cattle.CrossRef |

Seidel, G. E. (2015). Lessons from reproductive technology research. Annu. Rev. Anim. Biosci. 3, 467–487.
Lessons from reproductive technology research.CrossRef |

Sharpley, M. S., Marciniak, C., Eckel-Mahan, K., McManus, M., Crimi, M., Waymire, K., Lin, C. S., Masubuchi, S., Friend, N., Koike, M., Chalkia, D., MacGregor, G., Sassone-Corsi, P., and Wallace, D. C. (2012). Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151, 333–343.
Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition.CrossRef | 1:CAS:528:DC%2BC38XhsV2qtLjK&md5=323e0c4dc3a4dc4a0853b9674e4c0ce7CAS |

Sheshadri, P., and Kumar, A. (2016). Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD. Free Radic. Res. 50, 570–584.
Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD.CrossRef | 1:CAS:528:DC%2BC28XltVKltLg%3D&md5=ed3ed90b2ab4b73a430094ec856d32e9CAS |

Shin, T., Kraemer, D., Pryor, J., Liu, L., Rugila, J., Howe, L., Buck, S., Murphy, K., Lyons, L., and Westhusin, M. (2002). A cat cloned by nuclear transplantation. Nature 415, 859.
A cat cloned by nuclear transplantation.CrossRef | 1:CAS:528:DC%2BD38Xhs1yhtbk%3D&md5=22f7f364509c93b13631fd6c15bebc6fCAS |

Shutt, T. E., and Shadel, G. S. (2010). A compendium of human mitochondrial gene expression machinery with links to disease. Environ. Mol. Mutagen. 51, 360–379.
| 1:CAS:528:DC%2BC3cXnsVWgt7s%3D&md5=c7724b6b260777d5f6b503ffdf562810CAS |

Sloan, D. B., Fields, P. D., and Havird, J. C. (2015). Mitonuclear linkage disequilibrium in human populations. Proc. Biol. Sci. 282, 20151704.
Mitonuclear linkage disequilibrium in human populations.CrossRef |

Sloan, D. B., Havird, J. C., and Sharbrough, J. (2017). The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol. Ecol. 26, 2212–2236.
The on-again, off-again relationship between mitochondrial genomes and species boundaries.CrossRef |

Song, W. H., Yi, Y. J., Sutovsky, M., Meyers, S., and Sutovsky, P. (2016). Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc. Natl Acad. Sci. USA 113, E5261–E5270.
Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization.CrossRef | 1:CAS:528:DC%2BC28Xhtl2mtL%2FE&md5=4b6312f831775577f6bbca320cd0841aCAS |

Spelbrink, J. N., Li, F. Y., Tiranti, V., Nikali, K., Yuan, Q. P., Tariq, M., Wanrooij, S., Garrido, N., Comi, G., Morandi, L., Santoro, L., Toscano, A., Fabrizi, G. M., Somer, H., Croxen, R., Beeson, D., Poulton, J., Suomalainen, A., Jacobs, H. T., Zeviani, M., and Larsson, C. (2001). Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat. Genet. 28, 223–231.
Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria.CrossRef | 1:STN:280:DC%2BD3MznsV2jsQ%3D%3D&md5=f09f5e273b986d9340701f5d1031f904CAS |

Spikings, E. C., Alderson, J., and St John, J. C. (2006). Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer. Hum. Reprod. Update 12, 401–415.
Transmission of mitochondrial DNA following assisted reproduction and nuclear transfer.CrossRef | 1:CAS:528:DC%2BD28Xmt1Wkur8%3D&md5=0d2db77de62b6f8913eb87f255c4a224CAS |

Spikings, E. C., Alderson, J., and St John, J. C. (2007). Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol. Reprod. 76, 327–335.
Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development.CrossRef | 1:CAS:528:DC%2BD2sXhtFWqtLs%3D&md5=f5379493a632d9b86a1bda1a7b54bb37CAS |

Spiropoulos, J., Turnbull, D. M., and Chinnery, P. F. (2002). Can mitochondrial DNA mutations cause sperm dysfunction? Mol. Hum. Reprod. 8, 719–721.
Can mitochondrial DNA mutations cause sperm dysfunction?CrossRef | 1:CAS:528:DC%2BD38XmvFOrsbw%3D&md5=2298f30b12b88af5ecd5365c32b51090CAS |

Srirattana, K., and St John, J. C. (2017). Manipulating the mitochondrial genome to enhance cattle embryo development. G3 (Bethesda) 7, 2065–2080.
Manipulating the mitochondrial genome to enhance cattle embryo development.CrossRef |

Srirattana, K., McCosker, K., Schatz, T., and St John, J. C. (2017). Cattle phenotypes can disguise their maternal ancestry. BMC Genet. 18, 59.
Cattle phenotypes can disguise their maternal ancestry.CrossRef |

St John, J. C. (2012). Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility. Cell Tissue Res. 349, 795–808.
Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility.CrossRef | 1:CAS:528:DC%2BC38Xht1yltbjM&md5=7279ef73153f91890a6418c3e40c70c0CAS |

St John, J. (2014). The control of mtDNA replication during differentiation and development. Biochim. Biophys. Acta 1840, 1345–1354.
The control of mtDNA replication during differentiation and development.CrossRef | 1:CAS:528:DC%2BC3sXhsl2jsbnE&md5=4a615972740c7290a4107308bdc8584bCAS |

St John, J. C., and Schatten, G. (2004). Paternal mitochondrial DNA transmission during nonhuman primate nuclear transfer. Genetics 167, 897–905.
Paternal mitochondrial DNA transmission during nonhuman primate nuclear transfer.CrossRef | 1:CAS:528:DC%2BD2cXms1Knurg%3D&md5=56cba01cae89fec195c16c0ef2d49b4bCAS |

St John, J. C., Cooke, I. D., and Barratt, C. L. (1997). Mitochondrial mutations and male infertility. Nat. Med. 3, 124–125.
Mitochondrial mutations and male infertility.CrossRef | 1:CAS:528:DyaK2sXpsVGluw%3D%3D&md5=11d46b4ac972b6200862af35dc9891ccCAS |

St John, J. C., Sakkas, D., and Barratt, C. L. (2000). A role for mitochondrial DNA and sperm survival. J. Androl. 21, 189–199.
| 1:CAS:528:DC%2BD3cXhvFGhtrw%3D&md5=a0f274499817df89273d7b1827af4f95CAS |

St John, J. C., Jokhi, R. P., and Barratt, C. L. (2001). Men with oligoasthenoteratozoospermia harbour higher numbers of multiple mitochondrial DNA deletions in their spermatozoa, but individual deletions are not indicative of overall aetiology. Mol. Hum. Reprod. 7, 103–111.
Men with oligoasthenoteratozoospermia harbour higher numbers of multiple mitochondrial DNA deletions in their spermatozoa, but individual deletions are not indicative of overall aetiology.CrossRef | 1:CAS:528:DC%2BD3MXhtVeis7g%3D&md5=644c6f65be4c332ca8e0f370c86aa958CAS |

St John, J. C., Jokhi, R. P., and Barratt, C. L. (2005a). The impact of mitochondrial genetics on male infertility. Int. J. Androl. 28, 65–73.
The impact of mitochondrial genetics on male infertility.CrossRef | 1:CAS:528:DC%2BD2MXjsVOmtrc%3D&md5=8fca1cd41d1e02a1b7568315ac8e6b05CAS |

St John, J. C., Moffatt, O., and D’Souza, N. (2005b). Aberrant heteroplasmic transmission of mtDNA in cloned pigs arising from double nuclear transfer. Mol. Reprod. Dev. 72, 450–460.
Aberrant heteroplasmic transmission of mtDNA in cloned pigs arising from double nuclear transfer.CrossRef | 1:CAS:528:DC%2BD2MXhtFGmurjN&md5=3a4108e4caf2b506d0888a6f9e0517adCAS |

St John, J. C., Facucho-Oliveira, J., Jiang, Y., Kelly, R., and Salah, R. (2010). Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells. Hum. Reprod. Update 16, 488–509.
Mitochondrial DNA transmission, replication and inheritance: a journey from the gamete through the embryo and into offspring and embryonic stem cells.CrossRef | 1:CAS:528:DC%2BC3cXhtVektr7L&md5=a43776dc046c659e438c87f8dd99b73bCAS |

Steinborn, R., Schinogl, P., Wells, D. N., Bergthaler, A., Muller, M., and Brem, G. (2002). Coexistence of Bos taurus and B. indicus mitochondrial DNAs in nuclear transfer-derived somatic cattle clones. Genetics 162, 823–829.
| 1:CAS:528:DC%2BD38XptVOrsbc%3D&md5=b703f3d50fa3da54d86e388b75918a88CAS |

Stewart, J. B., Freyer, C., Elson, J. L., and Larsson, N. G. (2008). Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nat. Rev. Genet. 9, 657–662.
Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease.CrossRef | 1:CAS:528:DC%2BD1cXhtVSitrjJ&md5=e8559efa2d5a2e807ade37da1aebbc2fCAS |

Stigliani, S., Persico, L., Lagazio, C., Anserini, P., Venturini, P. L., and Scaruffi, P. (2014). Mitochondrial DNA in Day 3 embryo culture medium is a novel, non-invasive biomarker of blastocyst potential and implantation outcome. Mol. Hum. Reprod. 20, 1238–1246.
Mitochondrial DNA in Day 3 embryo culture medium is a novel, non-invasive biomarker of blastocyst potential and implantation outcome.CrossRef | 1:CAS:528:DC%2BC28XitVyhtrbJ&md5=ad6f2f314fbebebe8fcfe31020854e53CAS |

Storey, B. T. (1980). Strategy of oxidative metabolism in bull spermatozoa. J. Exp. Zool. 212, 61–67.
Strategy of oxidative metabolism in bull spermatozoa.CrossRef | 1:CAS:528:DyaL3cXkvFant7w%3D&md5=6108143ddd5fb63bd8906798a28bed98CAS |

Storey, B. T., and Kayne, F. J. (1975). Energy metabolism of spermatozoa. V. The Embden–Myerhof pathway of glycolysis: activities of pathway enzymes in hypotonically treated rabbit epididymal spermatozoa. Fertil. Steril. 26, 1257–1265.
Energy metabolism of spermatozoa. V. The Embden–Myerhof pathway of glycolysis: activities of pathway enzymes in hypotonically treated rabbit epididymal spermatozoa.CrossRef | 1:CAS:528:DyaE28XhtF2jsbw%3D&md5=b3bd5244b5d3dbd7c3579d87fadd58c6CAS |

Suissa, S., Wang, Z., Poole, J., Wittkopp, S., Feder, J., Shutt, T. E., Wallace, D. C., Shadel, G. S., and Mishmar, D. (2009). Ancient mtDNA genetic variants modulate mtDNA transcription and replication. PLoS Genet. 5, e1000474.
Ancient mtDNA genetic variants modulate mtDNA transcription and replication.CrossRef |

Sun, X., and St John, J. C. (2016). The role of the mtDNA set point in differentiation, development and tumorigenesis. Biochem. J. 473, 2955–2971.
The role of the mtDNA set point in differentiation, development and tumorigenesis.CrossRef | 1:CAS:528:DC%2BC2sXhs1ymu7w%3D&md5=56f0b68dd9fbbacf15646f960a1703eaCAS |

Sutarno, , Cummins, J. M., Greeff, J., and Lymbery, A. J. (2002). Mitochondrial DNA polymorphisms and fertility in beef cattle. Theriogenology 57, 1603–1610.
Mitochondrial DNA polymorphisms and fertility in beef cattle.CrossRef | 1:CAS:528:DC%2BD38XktlWnurw%3D&md5=17d00e1341ace3d53bccdef7d5878bfeCAS |

Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (1999). Ubiquitin tag for sperm mitochondria. Nature 402, 371–372.
Ubiquitin tag for sperm mitochondria.CrossRef | 1:CAS:528:DyaK1MXnvVyktrs%3D&md5=e517e357610f60af3e6e5c0f8cef9f11CAS |

Takeda, K., Akagi, S., Kaneyama, K., Kojima, T., Takahashi, S., Imai, H., Yamanaka, M., Onishi, A., and Hanada, H. (2003). Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells. Mol. Reprod. Dev. 64, 429–437.
Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells.CrossRef | 1:CAS:528:DC%2BD3sXislOqsro%3D&md5=b7bcd8cb7039a88a47829c0c811b242cCAS |

Takeda, K., Tasai, M., Iwamoto, M., Akita, T., Tagami, T., Nirasawa, K., Hanada, H., and Onishi, A. (2006). Transmission of mitochondrial DNA in pigs and progeny derived from nuclear transfer of Meishan pig fibroblast cells. Mol. Reprod. Dev. 73, 306–312.
Transmission of mitochondrial DNA in pigs and progeny derived from nuclear transfer of Meishan pig fibroblast cells.CrossRef | 1:CAS:528:DC%2BD28XhsVKht7g%3D&md5=08e12da7ca5dce56cda9c10fa37bc595CAS |

Takeda, K., Srirattana, K., Matsukawa, K., Akagi, S., Kaneda, M., Tasai, M., Nirasawa, K., Pinkert, C. A., Parnpai, R., and Nagai, T. (2012). Influence of intergeneric/interspecies mitochondrial injection; parthenogenetic development of bovine oocytes after injection of mitochondria derived from somatic cells. J. Reprod. Dev. 58, 323–329.
Influence of intergeneric/interspecies mitochondrial injection; parthenogenetic development of bovine oocytes after injection of mitochondria derived from somatic cells.CrossRef | 1:CAS:528:DC%2BC38XhtF2jsr3J&md5=3d491ce5a1aef006b1dec4ba9be83e33CAS |

Takeo, S., Goto, H., Kuwayama, T., Monji, Y., and Iwata, H. (2013). Effect of maternal age on the ratio of cleavage and mitochondrial DNA copy number in early developmental stage bovine embryos. J. Reprod. Dev. 59, 174–179.
Effect of maternal age on the ratio of cleavage and mitochondrial DNA copy number in early developmental stage bovine embryos.CrossRef | 1:CAS:528:DC%2BC3sXnsVOntb4%3D&md5=f90594b6fd4b27656444449211c9bc44CAS |

Tamassia, M., Nuttinck, F., May-Panloup, P., Reynier, P., Heyman, Y., Charpigny, G., Stojkovic, M., Hiendleder, S., Renard, J. P., and Chastant-Maillard, S. (2004). In vitro embryo production efficiency in cattle and its association with oocyte adenosine triphosphate content, quantity of mitochondrial DNA, and mitochondrial DNA haplogroup. Biol. Reprod. 71, 697–704.
In vitro embryo production efficiency in cattle and its association with oocyte adenosine triphosphate content, quantity of mitochondrial DNA, and mitochondrial DNA haplogroup.CrossRef | 1:CAS:528:DC%2BD2cXmtFWgu7c%3D&md5=c1d620d72b50e619e0b899353dfc0ef3CAS |

Tanaka, M., Gong, J. S., Zhang, J., Yoneda, M., and Yagi, K. (1998). Mitochondrial genotype associated with longevity. Lancet 351, 185–186.
Mitochondrial genotype associated with longevity.CrossRef | 1:STN:280:DyaK1c7htFGgsw%3D%3D&md5=e6e08d48334c98afd913d01b763b8d46CAS |

Tang, L., Gonzalez, R., and Dobrinski, I. (2015). Germline modification of domestic animals. Anim. Reprod. 12, 93–104.
| 1:STN:280:DC%2BC2srjvF2ltg%3D%3D&md5=fc27dfe783ddd4ce3c71bc2ee6e3bf4fCAS |

Tannus, S., Son, W. Y., Gilman, A., Younes, G., Shavit, T., and Dahan, M. H. (2017). The role of intracytoplasmic sperm injection in non-male factor infertility in advanced maternal age. Hum. Reprod. 32, 119–124.

Thongphakdee, A., Kobayashi, S., Imai, K., Inaba, Y., Tasai, M., Tagami, T., Nirasawa, K., Nagai, T., Saito, N., Techakumphu, M., and Takeda, K. (2008). Interspecies nuclear transfer embryos reconstructed from cat somatic cells and bovine ooplasm. J. Reprod. Dev. 54, 142–147.
Interspecies nuclear transfer embryos reconstructed from cat somatic cells and bovine ooplasm.CrossRef | 1:CAS:528:DC%2BD1cXmt1Cnu74%3D&md5=89163a070041bb0f26e8e87c8553fd81CAS |

Thundathil, J., Filion, F., and Smith, L. C. (2005). Molecular control of mitochondrial function in preimplantation mouse embryos. Mol. Reprod. Dev. 71, 405–413.
Molecular control of mitochondrial function in preimplantation mouse embryos.CrossRef | 1:CAS:528:DC%2BD2MXlvFSltLk%3D&md5=b93b237fb9fb26ff5bdc0d9c5116fd50CAS |

Tsai, T., and St John, J. C. (2016). The role of mitochondrial DNA copy number, variants, and haplotypes in farm animal developmental outcome. Domest. Anim. Endocrinol. 56, S133–S146.
The role of mitochondrial DNA copy number, variants, and haplotypes in farm animal developmental outcome.CrossRef | 1:CAS:528:DC%2BC28XmtFCnsbs%3D&md5=60ab1fb2c893b3985f618be7bef1433fCAS |

Tsai, T. S., Rajasekar, S., and St John, J. C. (2016). The relationship between mitochondrial DNA haplotype and the reproductive capacity of domestic pigs (Sus scrofa domesticus). BMC Genet. 17, 67.
The relationship between mitochondrial DNA haplotype and the reproductive capacity of domestic pigs (Sus scrofa domesticus).CrossRef |

Tzeng, C. R., Hsieh, R. H., Au, H. K., Yen, Y. H., Chang, S. J., and Cheng, Y. F. (2004). Mitochondria transfer (MIT) into oocyte from autologous cumulus granulosa cells (cGCs). Fertil. Steril. 82, S53.
Mitochondria transfer (MIT) into oocyte from autologous cumulus granulosa cells (cGCs).CrossRef |

Ursing, B. M., and Arnason, U. (1998). The complete mitochondrial DNA sequence of the pig (Sus scrofa). J. Mol. Evol. 47, 302–306.
The complete mitochondrial DNA sequence of the pig (Sus scrofa).CrossRef | 1:CAS:528:DyaK1cXmt1antrk%3D&md5=f18e15d11f10567d1d0a18de88aa7dc1CAS |

Van Blerkom, J. (2004). Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction 128, 269–280.
Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence.CrossRef | 1:CAS:528:DC%2BD2cXot1KitL0%3D&md5=c86570f5c916ae994b32e76848b6739bCAS |

Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.
Understanding the Warburg effect: the metabolic requirements of cell proliferation.CrossRef | 1:CAS:528:DC%2BD1MXmtVKlsbg%3D&md5=cea20dd3eee1b71d9a7cd2e230011c68CAS |

Wai, T., Teoli, D., and Shoubridge, E. A. (2008). The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat. Genet. 40, 1484–1488.
The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes.CrossRef | 1:CAS:528:DC%2BD1cXhsVWhu7nJ&md5=3f3c8b04cdb4cd18ed557490b44d8031CAS |

Wai, T., Ao, A., Zhang, X., Cyr, D., Dufort, D., and Shoubridge, E. A. (2010). The role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod. 83, 52–62.
The role of mitochondrial DNA copy number in mammalian fertility.CrossRef | 1:CAS:528:DC%2BC3cXotlWqtLo%3D&md5=7c842cc784fe6c5d576d353c0d13d460CAS |

Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.
Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei.CrossRef | 1:CAS:528:DyaK1cXkvFKnsbs%3D&md5=82a85411382dc289f93934dfd7205f11CAS |

Wallace, D. C. (2010). Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man. Proc. Natl Acad. Sci. USA 107, 8947–8953.
Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man.CrossRef | 1:CAS:528:DC%2BC3cXmt1yiurg%3D&md5=8eb4135f9770556879db1e42783e0cbaCAS |

Wang, Z., Figueiredo-Pereira, C., Oudot, C., Vieira, H. L., and Brenner, C. (2017). Mitochondrion: a common organelle for distinct cell deaths? Int. Rev. Cell Mol. Biol. 331, 245–287.
Mitochondrion: a common organelle for distinct cell deaths?CrossRef | 1:STN:280:DC%2BC1czpsVaiug%3D%3D&md5=946775f26bd7b25820c2d86a507c10abCAS |

Wanrooij, P. H., Uhler, J. P., Simonsson, T., Falkenberg, M., and Gustafsson, C. M. (2010). G-Quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc. Natl Acad. Sci. USA 107, 16072–16077.
G-Quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation.CrossRef | 1:CAS:528:DC%2BC3cXhtF2jurbL&md5=d9489386044f61f414deb7cb04bf8c65CAS |

Warburg, O. (1956a). On respiratory impairment in cancer cells. Science 124, 269–270.
| 1:STN:280:DyaG287gsVeksA%3D%3D&md5=94cbbcfb275bc5fd721d03e7a33724c4CAS |

Warburg, O. (1956b). On the origin of cancer cells. Science 123, 309–314.
On the origin of cancer cells.CrossRef | 1:STN:280:DyaG28%2FltV2ktQ%3D%3D&md5=0322d2841ded43cc34b98b4bcbae5f50CAS |

Waring, M. J. (1965). Complex formation between ethidium bromide and nucleic acids. J. Mol. Biol. 13, 269–282.
Complex formation between ethidium bromide and nucleic acids.CrossRef | 1:CAS:528:DyaF2MXks1Cmuro%3D&md5=50c06a32f01d05478f99e62d04b13315CAS |

Watanabe, S., and Nagai, T. (2008). Health status and productive performance of somatic cell cloned cattle and their offspring produced in Japan. J. Reprod. Dev. 54, 6–17.
Health status and productive performance of somatic cell cloned cattle and their offspring produced in Japan.CrossRef |

West, A. P., Shadel, G. S., and Ghosh, S. (2011). Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402.
Mitochondria in innate immune responses.CrossRef | 1:CAS:528:DC%2BC3MXmtlelt7c%3D&md5=e87174750e83d9e91f92f14e42f1d618CAS |

Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Viable offspring derived from fetal and adult mammalian cells.CrossRef | 1:CAS:528:DyaK2sXhsFamsLs%3D&md5=5cf384086cb771187e5cfef8a8d1beb2CAS |

Wittayarat, M., Sato, Y., Do, L. T., Chatdarong, K., Tharasanit, T., Techakumphu, M., Taniguchi, M., and Otoi, T. (2017). Epigenetic modulation on cat–cow interspecies somatic cell nuclear transfer embryos by treatment with trichostatin A. Anim. Sci. J. 88, 593–601.
Epigenetic modulation on cat–cow interspecies somatic cell nuclear transfer embryos by treatment with trichostatin A.CrossRef | 1:CAS:528:DC%2BC2sXlsFKlt74%3D&md5=e6eadc30648aff6e130837ee9c45cf38CAS |

Wolff, J. N., Ladoukakis, E. D., Enriquez, J. A., and Dowling, D. K. (2014). Mitonuclear interactions: evolutionary consequences over multiple biological scales. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130443.
Mitonuclear interactions: evolutionary consequences over multiple biological scales.CrossRef |

Wray, J., Kalkan, T., and Smith, A. G. (2010). The ground state of pluripotency. Biochem. Soc. Trans. 38, 1027–1032.
The ground state of pluripotency.CrossRef | 1:CAS:528:DC%2BC3cXptlylsL8%3D&md5=b2396e7a37459cde150390e2d157623bCAS |

Wu, Y. G., Liu, Y., Zhou, P., Lan, G. C., Han, D., Miao, D. Q., and Tan, J. H. (2007). Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model. Cell Res. 17, 722–731.
Selection of oocytes for in vitro maturation by brilliant cresyl blue staining: a study using the mouse model.CrossRef | 1:CAS:528:DC%2BD2sXovFeqtrk%3D&md5=1f05ff686a1eccef1831ae89de0a154fCAS |

Xu, B., Guo, N., Zhang, X. M., Shi, W., Tong, X. H., Iqbal, F., and Liu, Y. S. (2015). Oocyte quality is decreased in women with minimal or mild endometriosis. Sci. Rep. 5, 10779.
Oocyte quality is decreased in women with minimal or mild endometriosis.CrossRef |

Yu, G., Xiang, H., Tian, J., Yin, J., Pinkert, C. A., Li, Q., and Zhao, X. (2015). Mitochondrial haplotypes influence metabolic traits in porcine transmitochondrial cybrids. Sci. Rep. 5, 13118.
Mitochondrial haplotypes influence metabolic traits in porcine transmitochondrial cybrids.CrossRef | 1:CAS:528:DC%2BC2MXhsVKhsbnO&md5=d63819c84622a4a8e80c5aca4bdd8bb7CAS |

Yu, Z., O’Farrell, P. H., Yakubovich, N., and DeLuca, S. Z. (2017). The mitochondrial DNA polymerase promotes elimination of paternal mitochondrial genomes. Curr. Biol. 27, 1033–1039.
The mitochondrial DNA polymerase promotes elimination of paternal mitochondrial genomes.CrossRef | 1:CAS:528:DC%2BC2sXks1Grs7g%3D&md5=2469ac5e03caae71f1c729e5197550b2CAS |

Zhang, H., Meng, L. H., and Pommier, Y. (2007). Mitochondrial topoisomerases and alternative splicing of the human TOP1mt gene. Biochimie 89, 474–481.
Mitochondrial topoisomerases and alternative splicing of the human TOP1mt gene.CrossRef | 1:CAS:528:DC%2BD2sXkslWqt7k%3D&md5=6eff4394af464094055a29f4f7ec3839CAS |

Zouros, E., Freeman, K. R., Ball, A. O., and Pogson, G. H. (1992). Direct evidence for extensive paternal mitochondrial DNA inheritance in the marine mussel Mytilus. Nature 359, 412–414.
Direct evidence for extensive paternal mitochondrial DNA inheritance in the marine mussel Mytilus.CrossRef | 1:CAS:528:DyaK38XmtlSms7g%3D&md5=eaed906f0b98e0cef4b03b64e8d09606CAS |



Rent Article (via Deepdyve) Export Citation