Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Resveratrol supplementation promotes recovery of lower oxidative metabolism after vitrification and warming of in vitro-produced bovine embryos

Stephania Madrid Gaviria A F * , Sergio A. Morado B * , Albeiro López Herrera A , Giovanni Restrepo Betancur C , Rodrigo A. Urrego Álvarez D , Julián Echeverri Zuluaga A and Pablo D. Cética B E
+ Author Affiliations
- Author Affiliations

A Grupo de investigación en Biodiversidad y Genética Molecular (BIOGEM), Departamento de Producción Animal, Universidad Nacional de Colombia, Sede Medellín, Carrera 65 No. 59A-110, Código Postal 050034, Colombia.

B Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Chorroarin 280, Código Postal C1427CWO, Buenos Aires, Argentina.

C Grupo de Investigación en Biotecnología Animal (GIBA), Departamento de Producción Animal, Universidad Nacional de Colombia, Sede Medellín, Colombia.

D Grupo de Investigación INCA-CES, Facultad de Medicina Veterinaria y Zootecnia, Universidad CES, Calle 10 A No. 22-04, Código Postal 050021, Colombia.

E Unidad Ejecutora de Investigaciones en Producción Animal, Universidad de Buenos Aires – Consejo Nacional de Investigaciones Científicas y Técnicas, Chorroarin 280, Código Postal C1427CWO. Buenos Aires, Argentina.

F Corresponding author. Email: smadridg@unal.edu.co

Reproduction, Fertility and Development 31(3) 521-528 https://doi.org/10.1071/RD18216
Submitted: 9 June 2018  Accepted: 4 September 2018   Published: 30 October 2018

Abstract

Although vitrification is the current method of choice for oocyte and embryo cryopreservation, it may have detrimental effects on reduction–oxidation status and mitochondrial activity. The aim of this study was to evaluate the effect of supplementing in vitro culture (IVC) media and/or vitrification solutions with the antioxidant resveratrol on active mitochondria, mitochondrial superoxide production and lipid peroxidation. Abattoir-derived oocytes were matured and fertilised in vitro using standard procedures. Following IVF (21 h later), zygotes were cultured in IVC medium supplemented with 0 or 0.5 µM resveratrol. On Day 7, blastocysts were vitrified using the Cryotech Vitrification Kit (Cryo Tech Laboratory) with or without 0.5 µM resveratrol. After warming, active mitochondria, mitochondrial superoxide production and lipid peroxidation were evaluated using Mito Tracker Green FM, MitoSOX Red and BODIPY581/591 C11 staining respectively. The vitrification–warming process significantly increased active mitochondria and mitochondrial superoxide production in bovine embryos (P < 0.05, ANOVA). The addition of 0.5 µM resveratrol to the IVC medium or vitrification solutions significantly attenuated the increase in active mitochondria (P < 0.05), but not in mitochondrial superoxide production, whereas embryos cultured and vitrified with resveratrol showed the highest values for both parameters (P < 0.05). Regarding lipid peroxidation, no significant differences were detected between treatments. In conclusion, resveratrol supplementation of IVC medium or vitrification solutions contributes to recovery of an embryo’s ‘quieter’ state (i.e. lower oxidative metabolism) after vitrification. However, supplementation of both solutions with resveratrol seemed to have a pro-oxidant effect.

Additional keywords: assisted reproductive technology, blastocyst, oxidative stress.


References

Abe, T., Kawahara-Miki, R., Hara, T., Noguchi, T., Hayashi, T., Shirusuna, K., Kuwayama, T., and Iwata, H. (2017). Modification of mitochondrial function, cytoplasmic lipid content and cryosensitivity of bovine embryos by resveratrol. J. Reprod. Dev. 63, 455–461.
Modification of mitochondrial function, cytoplasmic lipid content and cryosensitivity of bovine embryos by resveratrol.Crossref | GoogleScholarGoogle Scholar |

Amoushahi, M., Salehnia, M., and HosseinKhani, S. (2013). The effect of vitrification and in vitro culture on the adenosine triphosphate content and mitochondrial distribution of mouse pre-implantation embryos. Iran. Biomed. J. 17, 123–128.
The effect of vitrification and in vitro culture on the adenosine triphosphate content and mitochondrial distribution of mouse pre-implantation embryos.Crossref | GoogleScholarGoogle Scholar |

Arav, A. (2014). Cryopreservation of oocytes and embryos. Theriogenology 81, 96–102.
Cryopreservation of oocytes and embryos.Crossref | GoogleScholarGoogle Scholar |

Ayala, A., Muñoz, M. F., and Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, .
Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.Crossref | GoogleScholarGoogle Scholar |

Baumann, C. G., Morris, D. G., Sreenan, J. M., and Leese, H. J. (2007). Review article. The quiet embryo hypothesis: molecular characteristics favoring viability. Mol. Reprod. Dev. 74, 1345–1353.
Review article. The quiet embryo hypothesis: molecular characteristics favoring viability.Crossref | GoogleScholarGoogle Scholar |

Betts, D. H., Bain, N. T., and Madan, P. (2014). The p66 Shc adaptor protein controls oxidative stress response in early bovine embryos. PLoS One 9, e86978.
The p66 Shc adaptor protein controls oxidative stress response in early bovine embryos.Crossref | GoogleScholarGoogle Scholar |

Bin, D., Feng-mei, Z., Jian-jun, M., Xian-jun, M., and Bin, L. (2008). Antioxidant activity of resveratrol from wine grape pomace. Nat. Prod. Res. Dev. 20, 899–902.

Castillo-Martín, M., Bonet, S., Morató, R., and Yeste, M. (2014). Supplementing culture and vitrification–warming media with l-ascorbic acid enhances survival rates and redox status of IVP porcine blastocysts via induction of GPX1 and SOD1 expression. Cryobiology 68, 451–458.
Supplementing culture and vitrification–warming media with l-ascorbic acid enhances survival rates and redox status of IVP porcine blastocysts via induction of GPX1 and SOD1 expression.Crossref | GoogleScholarGoogle Scholar |

Dalcin, L., Silva, R. C., Paulini, F., Silva, B. D. M., Neves, J. P., and Lucci, C. M. (2013). Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos. Cryobiology 67, 137–145.
Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos.Crossref | GoogleScholarGoogle Scholar |

Dehghani-Mohammadabadi, M., Salehi, M., Farifteh, F., Nematollahi, S., Arefian, E., Hajjarizadeh, A., Parivar, K., and Nourmohammadi, Z. (2014). Melatonin modulates the expression of BCL-xl and improve the development of vitrified embryos obtained by IVF in mice. J. Assist. Reprod. Genet. 31, 453–461.
Melatonin modulates the expression of BCL-xl and improve the development of vitrified embryos obtained by IVF in mice.Crossref | GoogleScholarGoogle Scholar |

Gambini, J., Inglés, M., Olaso, G., Lopez-Grueso, R., Bonet-Costa, V., Gimeno-Mallench, L., Mas-Bargues, C., Abdelaziz, K. M., Gomez-Cabrera, M. C., Vina, J., and Borras, C. (2015). Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev. 2015, 837042.
Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans.Crossref | GoogleScholarGoogle Scholar |

Gao, C., Han, H. B., Tian, X. Z., Tan, D. X., Wang, L., Zhou, G. B., Zhu, S. E., and Liu, G. S (2012). Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J. Pineal Res. 52, 305–311.
Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos.Crossref | GoogleScholarGoogle Scholar |

Gaschler, M. M., and Stockwell, B. R. (2017). Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun. 482, 419–425.
Lipid peroxidation in cell death.Crossref | GoogleScholarGoogle Scholar |

Giaretta, E., Spinaci, M., Bucci, D., Tamanini, C., and Galeati, G. (2013). Effects of resveratrol on vitrified porcine oocytes. Oxid. Med. Cell. Longev. 2013, Article ID 920257.
Effects of resveratrol on vitrified porcine oocytes.Crossref | GoogleScholarGoogle Scholar |

Gomes, A., Fernandes, E., and Lima, J. L. F. C. (2005). Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65, 45–80.
Fluorescence probes used for detection of reactive oxygen species.Crossref | GoogleScholarGoogle Scholar |

Gueguen, N., Desquiret-Dumas, V., Leman, G., Chupin, S., Baron, S., Nivet-Antoine, V., Vessieres, E., Ayer, A., Henrion, D., Lenaers, G., Reynier, P., and Procaccio, V. (2015). Resveratrol directly binds to mitochondrial complex I and increases oxidative stress in brain mitochondria of aged mice. PLoS One 10, e0144290.
Resveratrol directly binds to mitochondrial complex I and increases oxidative stress in brain mitochondria of aged mice.Crossref | GoogleScholarGoogle Scholar |

Gutnisky, C., Alvarez, G. M., Cetica, P. D., and Dalvit, G. C. (2013a). Evaluation of the Cryotech Vitrification Kit for bovine embryos. Cryobiology 67, 391–393.
Evaluation of the Cryotech Vitrification Kit for bovine embryos.Crossref | GoogleScholarGoogle Scholar |

Gutnisky, C., Morado, S., Dalvit, G. C., Thompson, J. G., and Cética, P. D. (2013b). Glycolytic pathway activity: effect on IVM and oxidative metabolism of bovine oocytes. Reprod. Fertil. Dev. 25, 1026–1035.
Glycolytic pathway activity: effect on IVM and oxidative metabolism of bovine oocytes.Crossref | GoogleScholarGoogle Scholar |

Hayashi, T., Ueda, S., Mori, M., Baba, T., Abe, T., and Iwata, H. (2018). Influence of resveratrol pretreatment on thawed bovine embryo quality and mitochondrial DNA copy number. Theriogenology 106, 271–278.
Influence of resveratrol pretreatment on thawed bovine embryo quality and mitochondrial DNA copy number.Crossref | GoogleScholarGoogle Scholar |

Hosseini, S. M., Forouzanfar, M., Hajian, M., Asgari, V., Abedi, P., Hosseini, L., Ostadhosseini, S., Moulavi, F., Safahani Langrroodi, M., Sadeghi, H., Bahramian, H., Eghbalsaied, S., and Nasr-Esfahani, M. H. (2009). Antioxidant supplementation of culture medium during embryo development and/or after vitrification-warming; which is the most important? J. Assist. Reprod. Genet. 26, 355–364.
Antioxidant supplementation of culture medium during embryo development and/or after vitrification-warming; which is the most important?Crossref | GoogleScholarGoogle Scholar |

Hussein, M. A. (2011). A convenient mechanism for the free radical scavenging activity of resveratrol. Int. J. Phytomed. 3, 459–469.

Iuga, C., Álvarez-Idaboy, R., and Russo, N. (2012). Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetics study. J. Org. Chem. 77, 3868–3877.
Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetics study.Crossref | GoogleScholarGoogle Scholar |

Jung, J., Shin, H., Bang, S., Mok, H. J., Suh, C. S., Kim, K. P., and Lim, H. J. (2014). Analysis of the phospholipid profile of metaphase II mouse oocytes undergoing vitrification. PLoS One 9, e102620.
Analysis of the phospholipid profile of metaphase II mouse oocytes undergoing vitrification.Crossref | GoogleScholarGoogle Scholar |

Kaidi, S., Bernard, S., Lambert, P., Massip, A., Dessy, F., and Donnay, I. (2001). Effect of conventional controlled-rate freezing and vitrification on morphology and metabolism of bovine blastocysts produced in vitro. Biol. Reprod. 65, 1127–1134.
Effect of conventional controlled-rate freezing and vitrification on morphology and metabolism of bovine blastocysts produced in vitro.Crossref | GoogleScholarGoogle Scholar |

Krisher, R. L., and Prather, R. S. (2012). A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation. Mol. Reprod. Dev. 79, 311–320.
A role for the Warburg effect in preimplantation embryo development: metabolic modification to support rapid cell proliferation.Crossref | GoogleScholarGoogle Scholar |

Leese, H. J. (2012). Metabolism of the preimplantation embryo: 40 years on. Reproduction 143, 417–427.
Metabolism of the preimplantation embryo: 40 years on.Crossref | GoogleScholarGoogle Scholar |

Lei, T., Guo, N., Tan, M., and Li, Y. (2014). Effect of mouse oocyte vitrification on mitochondrial membrane potential and distribution. J. Huazhong Univ. Sci. Technol Med Sci 34, 99–102.
Effect of mouse oocyte vitrification on mitochondrial membrane potential and distribution.Crossref | GoogleScholarGoogle Scholar |

Leonard, S. S., Xia, C., Jiang, B. H., Stinefelt, B., Klandorf, H., Harris, G. K., and Shi, X. (2003). Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem. Biophys. Res. Commun. 309, 1017–1026.
Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses.Crossref | GoogleScholarGoogle Scholar |

Liu, Y., He, X. Q., Huang, X., Ding, L., Xu, L., Shen, Y. T., Zhang, F., Zhu, M. B., Xu, B. H., Qi, Z. Q., and Wang, H. L. (2013). Resveratrol protects mouse oocytes from methylglyoxal-induced oxidative damage. PLoS One 8, e77960.
Resveratrol protects mouse oocytes from methylglyoxal-induced oxidative damage.Crossref | GoogleScholarGoogle Scholar |

Longobardi, V., Zullo, G., Salzano, A., De Canditiis, C., Cammarano, A., De Luise, L., Puzio, M. V., Neglia, G., and Gasparrini, B. (2017). Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen–thawed sperm. Theriogenology 88, 1–8.
Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen–thawed sperm.Crossref | GoogleScholarGoogle Scholar |

López-Lázaro, M. (2008). The Warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anti-Cancer Agents Medicianl Chem. 8, 305–312.
The Warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen?Crossref | GoogleScholarGoogle Scholar |

Macedo, T. J. S., Barros, V. R. P., Monte, A. P. O., and Gouveia, B. B. (2017). Resveratrol has dose-dependent effects on DNA fragmentation and mitochondrial activity of ovine secondary follicles cultured in vitro. Zygote 25, 434–442.
Resveratrol has dose-dependent effects on DNA fragmentation and mitochondrial activity of ovine secondary follicles cultured in vitro.Crossref | GoogleScholarGoogle Scholar |

Nohales-Córcoles, M., Sevillano-Almerich, G., Di Emidio, G., Tatone, C., Cobo, A., Dumollard, R., and De los Santon Molina, M. (2016). Impact of vitrification on the mitochondrial activity and redox homeostasis of human oocyte. Hum. Reprod. 31, 1850–1858.
Impact of vitrification on the mitochondrial activity and redox homeostasis of human oocyte.Crossref | GoogleScholarGoogle Scholar |

Ortega Ferrusola, C., González Fernández, L., Morrell, J. M., Salazar Sandoval, C., Macías García, B., Rodríguez-Martinez, H., Tapia, J. A., and Peña, F. J. (2009). Lipid peroxidation, assessed with BODIPY-C 11, increases after cryopreservation of stallion spermatozoa, is stallion-dependent and is related to apoptotic-like changes. Reproduction 138, 55–63.
Lipid peroxidation, assessed with BODIPY-C 11, increases after cryopreservation of stallion spermatozoa, is stallion-dependent and is related to apoptotic-like changes.Crossref | GoogleScholarGoogle Scholar |

Park, S. J., Ahmad, F., Philp, A., Baar, K., Williams, T., Ke, H., Rehmann, H., Taussig, R., Brown, A. L., Myung, K., Beaven, M. A., Burgin, A. B., Manganiello, V., and Chung, J. H. (2012). Resveratrol ameliorates aging-related metabolib phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421–433.
Resveratrol ameliorates aging-related metabolib phenotypes by inhibiting cAMP phosphodiesterases.Crossref | GoogleScholarGoogle Scholar |

Perry G. (2016). ‘2015 Statistics of Embryo Collection and Transfer in Domestic Farm Animals.’ (IETS.)

Rapajittikul, H., Tangchaisin, P., and Vutyavanich, T. (2013). Effects of reduced glutathione supplementation during vitrification/warming on the survival and viability of human sperm. In ‘International Graduate Research Conference’, 20 December 2013, Chiang Mai, Thailand. (Ed. Chiang Mai University.) pp. 68–72.

Rodriguez Villamil, P., Lozano, D., Oviedo, J., Ongaratto, F., and Bó, G. (2012). Developmental rates of in vivo and in vitro produced bovine embryos cryopreserved in ethylene glycol based solution by slow freezing or solid surface vitrification. Anim. Reprod. 9, 86–92.

Rubiolo, J. A., Mithieux, G., and Vega, F. V. (2008). Resveratrol protects primary rat hepatocytes against oxidative stress damage. Activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur. J. Pharmacol. 591, 66–72.
Resveratrol protects primary rat hepatocytes against oxidative stress damage. Activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes.Crossref | GoogleScholarGoogle Scholar |

Salzano, A., Albero, G., Zullo, G., Neglia, G., Abdel-Wahab, A., Bifulco, G., Zicarelli, L., and Gasparrini, B. (2014). Effect of resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Anim. Reprod. Sci. 151, 91–96.
Effect of resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos.Crossref | GoogleScholarGoogle Scholar |

Sarlos, P., Molnar, A., Kokai, M., Gabor, G., and Ratky, J. (2002). Comparative evaluation of the effect of antioxidants in the conservation of ram semen. Acta Vet. Hung. 50, 235–245.
Comparative evaluation of the effect of antioxidants in the conservation of ram semen.Crossref | GoogleScholarGoogle Scholar |

Stojanović, S., Sprinz, H., and Brede, O. (2001). Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Arch. Biochem. Biophys. 391, 79–89.
Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation.Crossref | GoogleScholarGoogle Scholar |

Yin, H., Xu, L., and Porter, N. A. (2011). Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111, 5944–5972.
Free radical lipid peroxidation: mechanisms and analysis.Crossref | GoogleScholarGoogle Scholar |

Zhao, X. M., Fu, X., Hou, Y., Yan, C., Suo, L. U. N., and Wang, Y. (2009). Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2-PN) embryos. Mol. Reprod. Dev. 76, 1056–1063.
Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2-PN) embryos.Crossref | GoogleScholarGoogle Scholar |

Zhao, X. M., Du, W., Wang, D., Hao, H., Liu, Y. A. N., Qin, T., and Zhu, H. (2011). Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol. Reprod. Dev. 78, 942–950.
Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture.Crossref | GoogleScholarGoogle Scholar |

Zhao, X. M., Hao, H. S., Du, W. H., Zhao, S. J., Wang, H. Y., Wang, N., Wang, D., Liu, Y., Qin, T., and Zhu, H. B. (2016). Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J. Pineal Res. 60, 132–141.
Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes.Crossref | GoogleScholarGoogle Scholar |

Zhou, X., Chen, M., Zeng, X., Yang, J., Deng, H., Yi, L., and Mi, M. T. (2014). Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells. Cell Death Dis. 5, e1576.
Resveratrol regulates mitochondrial reactive oxygen species homeostasis through Sirt3 signaling pathway in human vascular endothelial cells.Crossref | GoogleScholarGoogle Scholar |