Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Defective spermatogenesis and testosterone levels in kinase suppressor of Ras1 (KSR1)-deficient mice

Elena Moretti A , Giulia Collodel https://orcid.org/0000-0003-1587-0159 A C , Giuseppe Belmonte A , Daria Noto A and Emanuele Giurisato A B
+ Author Affiliations
- Author Affiliations

A Department of Molecular and Developmental Medicine, University of Siena, Policlinico Le Scotte, Viale Bracci, 14, 53100 Siena, Italy.

B Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

C Corresponding author. Email: giulia.collodel@unisi.it

Reproduction, Fertility and Development 31(8) 1369-1377 https://doi.org/10.1071/RD18386
Submitted: 19 September 2018  Accepted: 8 February 2019   Published: 15 April 2019

Abstract

The aim of this study was to clarify the role of the protein kinase suppressor of Ras1 (KSR1) in spermatogenesis. Spermatogenesis in ksr1−/− mice was studied in testicular tissue and epididymal spermatozoa by light and transmission electron microscopy and by immunofluorescence using antibodies to ghrelin and 3β-hydroxysteroid dehydrogenase (3β-HSD). Blood testosterone levels were also assessed. ksr1−/− mice showed reduced epididymal sperm concentration and motility as compared with wild-type (wt) mice. Testis tissue from ksr1−/− mice revealed a prevalent spermatogenetic arrest at the spermatocyte stage; the interstitial tissue was hypertrophic and the cytoplasm of the Leydig cells was full of lipid droplets. Ghrelin signal was present in the seminiferous tubules and, particularly, in the interstitial tissue of wt mice; however, in ksr1−/− mice ghrelin expression was very weak in both the interstitial tissue and tubules. On the contrary, the signal of 3β-HSD was weak in the interstitial tissue of wt and strong in ksr1−/− mice. Testosterone levels were significantly increased in the blood of ksr1−/− mice (P < 0.05) as compared with wt. The results obtained reveal the importance of the KSR scaffold proteins in the spermatogenetic process. The study of the molecular mechanisms associated with spermatogenetic defects in a mouse model is essential to understand the factors involved in human spermatogenesis.

Additional keywords : 3β-HSD, ghrelin, immunofluorescence, Leydig cells, transmission electron microscopy.


References

Barreiro, M. L., and Tena-Sempere, M. (2004). Ghrelin and reproduction: a novel signal linking energy status and fertility? Mol. Cell. Endocrinol. 226, 1–9.
Ghrelin and reproduction: a novel signal linking energy status and fertility?Crossref | GoogleScholarGoogle Scholar | 15488999PubMed |

Chang, C., Chen, Y. T., Yeh, S. D., Xu, Q., Wang, R. S., Guillou, F., Lardy, H., and Yeh, S. (2004). Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc. Natl. Acad. Sci. USA 101, 6876–6881.
Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 15107499PubMed |

Costanzo-Garvey, D. L., Pfluger, P. T., Dougherty, M. K., Stock, J. L., Boehm, M., Chaika, O., Fernandez, M. R., Fisher, K., Kortum, R. L., Hong, E. G., et al. (2009). KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab. 10, 366–378.
KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity.Crossref | GoogleScholarGoogle Scholar | 19883615PubMed |

De Gendt, K., Swinnen, J. V., Saunders, P. T., Schoonjans, L., Dewerchin, M., Devos, A., Tan, K., Atanassova, N., Claessens, F., Lécureuil, C., Heyns, W., Carmeliet, P., Guillou, F., Sharpe, R. M., and Verhoeven, G. (2004). A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc. Natl. Acad. Sci. USA 101, 1327–1332.
A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis.Crossref | GoogleScholarGoogle Scholar | 14745012PubMed |

Dougherty, M. K., Ritt, D. A., Zhou, M., Specht, S. I., Monson, D. M., Veenstra, T. D., and Morrison, D. K. (2009). KSR2 is a calcineurin substrate that promotes ERK cascade activation in response to calcium signals. Mol. Cell 34, 652–662.
KSR2 is a calcineurin substrate that promotes ERK cascade activation in response to calcium signals.Crossref | GoogleScholarGoogle Scholar | 19560418PubMed |

Dupont, J., Maillard, V., Coyral-Castel, S., Ramé, C., and Froment, P. (2010). Ghrelin in female and male reproduction. Int. J. Pept. 2010, 158102.
Ghrelin in female and male reproduction.Crossref | GoogleScholarGoogle Scholar | 20700403PubMed |

Fernandez, C. D., Bellentani, F. F., Fernandes, G. S., Perobelli, J. E., Favareto, A. P., Nascimento, A. F., Cicogna, A. C., and Kempinas, W. D. (2011). Diet-induced obesity in rats leads to a decrease in sperm motility. Reprod. Biol. Endocrinol. 9, 32.
Diet-induced obesity in rats leads to a decrease in sperm motility.Crossref | GoogleScholarGoogle Scholar | 21396114PubMed |

Fernández, I. F., Pérez-Rivas, L. G., Blanco, S., Castillo-Dominguez, A. A., Lozano, J., and Lazo, P. A. (2012). VRK2 anchors KSR1–MEK1 to endoplasmic reticulum forming a macromolecular complex that compartmentalizes MAPK signaling. Cell. Mol. Life Sci. 69, 3881–3893.
VRK2 anchors KSR1–MEK1 to endoplasmic reticulum forming a macromolecular complex that compartmentalizes MAPK signaling.Crossref | GoogleScholarGoogle Scholar | 22752157PubMed |

Frodyma, D., Neilsen, B., Costanzo-Garvey, D., Fisher, K., and Lewis, R. (2017). Coordinating ERK signaling via the molecular scaffold kinase suppressor of Ras. F1000Res. 6, 1621.
Coordinating ERK signaling via the molecular scaffold kinase suppressor of Ras.Crossref | GoogleScholarGoogle Scholar | 29026529PubMed |

Giurisato, E., Lin, J., Harding, A., Cerutti, E., Cella, M., Lewis, R. E., Colonna, M., and Shaw, A. S. (2009). The mitogen-activated protein kinase scaffold KSR1 is required for recruitment of extracellular signal-regulated kinase to the immunological synapse. Mol. Cell. Biol. 29, 1554–1564.
The mitogen-activated protein kinase scaffold KSR1 is required for recruitment of extracellular signal-regulated kinase to the immunological synapse.Crossref | GoogleScholarGoogle Scholar | 19139278PubMed |

Giurisato, E., Gamberucci, A., Ulivieri, C., Marruganti, S., Rossi, E., Giacomello, E., Randazzo, D., and Sorrentino, V. (2014). The KSR2-calcineurin complex regulates STIM1-ORAI1 dynamics and store-operated calcium entry (SOCE). Mol. Biol. Cell 25, 1769–1781.
The KSR2-calcineurin complex regulates STIM1-ORAI1 dynamics and store-operated calcium entry (SOCE).Crossref | GoogleScholarGoogle Scholar | 24672054PubMed |

Guo, L., Volle, D. J., and Lewis, R. E. (2014). Identification of a truncated kinase suppressor of Ras 2 mRNA in sperm. FEBS Open Bio 4, 420–425.
Identification of a truncated kinase suppressor of Ras 2 mRNA in sperm.Crossref | GoogleScholarGoogle Scholar | 24918056PubMed |

Guo, L., Costanzo-Garvey, D. L., Smith, D. R., Neilsen, B. K., MacDonald, R. G., and Lewis, R. E. (2017). Kinase suppressor of Ras 2 (KSR2) expression in the brain regulates energy balance and glucose homeostasis. Mol. Metab. 6, 194–205.
Kinase suppressor of Ras 2 (KSR2) expression in the brain regulates energy balance and glucose homeostasis.Crossref | GoogleScholarGoogle Scholar | 28180061PubMed |

Henry, M. D., Costanzo-Garvey, D. L., Klutho, P. J., and Lewis, R. E. (2014). Obesity-dependent dysregulation of glucose homeostasis in kinase suppressor of ras 2−/− mice. Physiol. Rep. 2, e12053.
Obesity-dependent dysregulation of glucose homeostasis in kinase suppressor of ras 2−/− mice.Crossref | GoogleScholarGoogle Scholar | 24997067PubMed |

Huhtaniemi, I., and Toppari, J. (1995). Endocrine, paracrine and autocrine regulation of testicular steroidogenesis. Adv. Exp. Med. Biol. 377, 33–54.
Endocrine, paracrine and autocrine regulation of testicular steroidogenesis.Crossref | GoogleScholarGoogle Scholar | 7484435PubMed |

Kortum, R. L., Costanzo, D. L., Haferbier, J., Schreiner, S. J., Razidlo, G. L., Wu, M. H., Volle, D. J., Mori, T., Sakaue, H., Chaika, N. V., and Lewis, R. E. (2005). The molecular scaffold kinase suppressor of Ras 1 (KSR1) regulates adipogenesis. Mol. Cell. Biol. 25, 7592–7604.
The molecular scaffold kinase suppressor of Ras 1 (KSR1) regulates adipogenesis.Crossref | GoogleScholarGoogle Scholar | 16107706PubMed |

Lavoie, H., Sahmi, M., Maisonneuve, P., Marullo, S. A., Thevakumaran, N., Jin, T., Kurinov, I., Sicheri, F., and Therrien, M. (2018). MEK drives BRAF activation through allosteric control of KSR proteins. Nature 554, 549–553.
MEK drives BRAF activation through allosteric control of KSR proteins.Crossref | GoogleScholarGoogle Scholar | 29433126PubMed |

Liu, L., Channavajhala, P. L., Rao, V. R., Moutsatsos, I., Wu, L., Zhang, Y., Lin, L. L., and Qiu, Y. (2009). Proteomic characterization of the dynamic KSR-2 interactome, a signaling scaffold complex in MAPK pathway. Biochim. Biophys. Acta 1794, 1485–1495.
Proteomic characterization of the dynamic KSR-2 interactome, a signaling scaffold complex in MAPK pathway.Crossref | GoogleScholarGoogle Scholar | 19563921PubMed |

Lozano, J., Xing, R., Cai, Z., Jensen, H. L., Trempus, C., Mark, W., Cannon, R., and Kolesnick, R. (2003). Deficiency of kinase suppressor of Ras1 prevents oncogenic Ras signaling in mice. Cancer Res. 63, 4232–4238.
| 12874031PubMed |

Moretti, E., Vindigni, C., Tripodi, S. A., Mazzi, L., Nuti, R., Figura, N., and Collodel, G. (2014). Immunolocalisation of ghrelin and obestatin in human testis, seminal vesicles, prostate and spermatozoa. Andrologia 46, 979–985.
Immunolocalisation of ghrelin and obestatin in human testis, seminal vesicles, prostate and spermatozoa.Crossref | GoogleScholarGoogle Scholar | 24147986PubMed |

Moretti, E., Collodel, G., Mazzi, L., Russo, I., and Giurisato, E. (2015). Ultrastructural study of spermatogenesis in KSR2 deficient mice. Transgenic Res. 24, 741–751.
Ultrastructural study of spermatogenesis in KSR2 deficient mice.Crossref | GoogleScholarGoogle Scholar | 26055731PubMed |

Nguyen, A., Burack, W. R., Stock, J. L., Kortum, R., Chaika, O. V., Afkarian, M., Muller, W. J., Murphy, K. M., Morrison, D. K., Lewis, R. E., McNeish, J., and Shaw, A. S. (2002). Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol. Cell. Biol. 22, 3035–3045.
Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo.Crossref | GoogleScholarGoogle Scholar | 11940661PubMed |

Ohmachi, M., Rocheleau, C. E., Church, D., Lambie, E., Schedl, T., and Sundaram, M. V. (2002). C. elegans ksr-1 and ksr-2 have both unique and redundant functions and are required for MPK-1 ERK phosphorylation. Curr. Biol. 12, 427–433.
C. elegans ksr-1 and ksr-2 have both unique and redundant functions and are required for MPK-1 ERK phosphorylation.Crossref | GoogleScholarGoogle Scholar | 11882296PubMed |

Oka, S., Shiraishi, K., and Matsuyama, H. (2017). Effects of human chorionic gonadotropin on testicular interstitial tissues in men with non-obstructive azoospermia. Andrology 5, 232–239.
Effects of human chorionic gonadotropin on testicular interstitial tissues in men with non-obstructive azoospermia.Crossref | GoogleScholarGoogle Scholar | 27860441PubMed |

Pearce, L. R., Atanassova, N., Banton, M. C., Bottomley, B., van der Klaauw, A. A., Revelli, J. P., Hendricks, A., Keogh, J. M., Henning, E., Doree, D., et al. (2013). KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation. Cell 155, 765–777.
KSR2 mutations are associated with obesity, insulin resistance, and impaired cellular fuel oxidation.Crossref | GoogleScholarGoogle Scholar | 24209692PubMed |

Perreault, S. D., and Cancel, A. M. (2001). Significance of incorporating measures of sperm production and function into rat toxicology studies. Reproduction 121, 207–216.
Significance of incorporating measures of sperm production and function into rat toxicology studies.Crossref | GoogleScholarGoogle Scholar | 11226045PubMed |

Revelli, J. P., Smith, D., Allen, J., Jeter-Jones, S., Shadoan, M. K., Desai, U., Schneider, M., van Sligtenhorst, I., Kirkpatrick, L., Platt, K. A., Suwanichkul, A., Savelieva, K., Gerhardt, B., Mitchell, J., Syrewicz, J., Zambrowicz, B., Hamman, B. D., Vogel, P., and Powell, D. R. (2011). Profound obesity secondary to hyperphagia in mice lacking kinase suppressor of ras 2. Obesity (Silver Spring) 19, 1010–1018.
Profound obesity secondary to hyperphagia in mice lacking kinase suppressor of ras 2.Crossref | GoogleScholarGoogle Scholar |

Sun, J., Zhong, L., Zhu, Y., and Liu, G. (2011). Research on the isolation of mouse Leydig cells using differential digestion with a low concentration of collagenase. J. Reprod. Dev. 57, 433–436.
Research on the isolation of mouse Leydig cells using differential digestion with a low concentration of collagenase.Crossref | GoogleScholarGoogle Scholar | 21403421PubMed |

Tash, J. A., McCallum, S., Hardy, M. P., Knudsen, B., and Schlegel, P. N. (2002). Men with nonobstructive azoospermia have Leydig cell hypertrophy but not hyperplasia. J. Urol. 168, 1068–1070.
Men with nonobstructive azoospermia have Leydig cell hypertrophy but not hyperplasia.Crossref | GoogleScholarGoogle Scholar | 12187224PubMed |

Tena-Sempere, M. (2005). Ghrelin: novel regulator of gonadal function. J. Endocrinol. Invest. 28, 26–29.
| 16114272PubMed |

Therrien, M., Chang, H. C., Solomon, N. M., Karim, F. D., Wassarman, D. A., and Rubin, G. M. (1995). KSR, a novel protein kinase required for Ras signal transduction. Cell 83, 879–888.
KSR, a novel protein kinase required for Ras signal transduction.Crossref | GoogleScholarGoogle Scholar | 8521512PubMed |

Toocheck, C., Clister, T., Shupe, J., Crum, C., Ravindranathan, P., Lee, T. K., Ahn, J. M., Raj, G. V., Sukhwani, M., Orwig, K. E., and Walker, W. H. (2016). Mouse spermatogenesis requires classical and nonclassical testosterone signaling. Biol. Reprod. 94, 11.
Mouse spermatogenesis requires classical and nonclassical testosterone signaling.Crossref | GoogleScholarGoogle Scholar | 26607719PubMed |

van der Lely, A. J., Tschöp, M., Heiman, M. L., and Ghigo, E. (2004). Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr. Rev. 25, 426–457.
Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin.Crossref | GoogleScholarGoogle Scholar | 15180951PubMed |

Walker, W. H. (2011). Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis 1, 116–120.
Testosterone signaling and the regulation of spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 22319659PubMed |

Wang, L., Fang, F., Li, Y., Zhang, Y., Pu, Y., and Zhang, X. (2011). Role of ghrelin on testosterone secretion and the mRNA expression of androgen receptors in adult rat testis. Syst Biol Reprod Med 57, 119–123.
Role of ghrelin on testosterone secretion and the mRNA expression of androgen receptors in adult rat testis.Crossref | GoogleScholarGoogle Scholar | 21204602PubMed |

Whitten, W. K., Bronson, F. H., and Greenstein, J. A. (1968). Estrus-inducing pheromone of male mice: transport by movement of air. Science 161, 584–585.
Estrus-inducing pheromone of male mice: transport by movement of air.Crossref | GoogleScholarGoogle Scholar | 5690897PubMed |

Ye, L., Li, X., Li, L., Chen, H., and Ge, R. S. (2017). Insights into the development of the adult Leydig cell lineage from stem Leydig cells. Front. Physiol. 8, 430.
Insights into the development of the adult Leydig cell lineage from stem Leydig cells.Crossref | GoogleScholarGoogle Scholar | 28701961PubMed |