Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Soil acidification and the carbon cycle in a cropping soil of north-eastern Victoria

W. J. Slattery, D. G. Edwards, L. C. Bell, D. R. Coventry and K. R. Helyar

Australian Journal of Soil Research 36(2) 273 - 290
Published: 1998

Abstract

Changes in soil organic matter were determined for a long-term (1975–95) experiment at the Rutherglen Research Institute in north-eastern Victoria. The crop rotations in this experiment were continuous lupins (LL) and continuous wheat (WW). The soil at this site was a solodic or Yellow Dermosol with a soil pH of 6·08 (pH in 0·01 М CaCl2 1 : 5) in 1975 in the surface 10 cm, which had declined by 0·8 and 1·5 pH units for WW and LL, respectively, in the 0–20 cm soil zone by 1992. Acidification rates decreased with increasing soil depth. The acidification rate in the 0–60 cm soil zone was 12·5 kmol(H+)/ha·year for the LL rotation and 4·6 kmol(H+)/ha·year for the WW rotation. The amount of CaCO3 required to neutralise the acidification of wheat-lupin rotations as calculated in this paper was up to 3·8 t/ha ·10 years for a WLWL rotation or 3 ·3 t/ha ·10 years for a WWL rotation; these amounts are significantly higher than previously reported rates.

In this paper, we calculate the impact of changes in soil carbon (C) status over time, and therefore soil buffering, on the rates of acidification in incremental soil layers to a depth of 60 cm. Total organic C for these rotations in 1992 was 1·12% for WW and 1·17% for LL in the 0–10 cm soil zone. An investigation of the humic and fulvic acid fractions of these 2 rotations to a depth of 60 cm showed that the LL rotation had significantly higher (P < 0·05) C at depth than the WW rotation. Acidification due to the net decrease in soil C over the 15-year study period plus acidification due to the alkali removed in the seed was calculated to be –4·88 kmol(H+)/ha·year for the LL rotation and –6·52 kmol(H+)/ha·year for the WW rotation.

Keywords: acidification, organic matter, acid soils, soil carbon, humic, fulvic.

https://doi.org/10.1071/S96095

© CSIRO 1998

Committee on Publication Ethics


Rent Article (via Deepdyve) Export Citation Cited By (24) Get Permission

View Dimensions