Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Nitrogen: the historical progression from ignorance to knowledge, with a view to future solutions

James N. Galloway A E , Allison M. Leach B , Jan Willem Erisman C and Albert Bleeker D
+ Author Affiliations
- Author Affiliations

A Department of Environmental Sciences, University of Virginia, 291 McCormick Road, Charlottesville, VA 22904, USA.

B Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA.

C Louis Bolk Institute, Hoofdstraat 24, 3972 LA Driebergen, The Netherlands Department of Earth Sciences, Earth and Climate Cluster, VU University Amsterdam, Amsterdam, The Netherlands.

D Department of Water, Agriculture and Food, The Netherlands Environmental Assessment Agency, Bezuidenhoutseweg 30, The Hague, The Netherlands.

E Corresponding author. Email: jng@virginia.edu

Soil Research 55(6) 417-424 https://doi.org/10.1071/SR16334
Submitted: 19 January 2017  Accepted: 6 June 2017   Published: 7 August 2017

Abstract

Once upon a time there was enough naturally occurring nitrogen (N) to provide food for the world’s peoples. Then there was not in the western regions. Now there is due to industrially produced NH3. But this transition from plenty, to scarcity, to plenty has come with a tremendous environmental cost. This paper provides an historical overview of the growth of knowledge about N and about its impacts, both positive and negative. The paper also explores three scenarios of what might have been, if in 1700 the world had the N-knowledge that we have now. The paper then projects N use to feed the world’s people in 2050 under three scenarios of per-capita protein consumption: increasing, constant and decreasing relative to nutritional guidelines. The three projected results for 2050 annual N use from producing and consuming food are 320, 230 and 170 Tg N respectively. The latter is equivalent to 1970 levels. Given that the first scenario (increasing protein) is most likely without utilising our N-knowledge, the paper ends with suggestions for improvements in N use and management.

Additional keywords: diet, historical perspective, impacts, projections.


References

Aber JD, Nadelhoffe KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39, 378–386.
Nitrogen saturation in northern forest ecosystems.CrossRef |

Billen G, Lassaletta L, Garnier J (2015) A vast range of opportunities for feeding the world in 2050: trade-off between diet, N contamination and international trade. Environmental Research Letters 10, 025001
A vast range of opportunities for feeding the world in 2050: trade-off between diet, N contamination and international trade.CrossRef |

Bodirsky BL, Popp A, Weindl I, Dietrich JP, Rolinski S, Scheiffele L, Schmitz C, Lotze-Campen H (2012) N2O emissions from the global agricultural nitrogen cycle—current state and future scenarios. Biogeosciences 9, 4169–4197.
N2O emissions from the global agricultural nitrogen cycle—current state and future scenarios.CrossRef | 1:CAS:528:DC%2BC3sXit1GrsLs%3D&md5=18e44479795011e50904ada4a121e1e5CAS |

Bodirsky BL, Popp A, Lotze-Campen H, Dietrich JP, Rolinski S, Weindl I, Schmitz C, Müller C, Bonsch M, Humpenöder F, Biewald A, Stevanovic M (2014) Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications 5, 3858
Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution.CrossRef | 1:CAS:528:DC%2BC2MXksVeqsLk%3D&md5=e38f5eb80c809b26acef3671f66ecccaCAS |

Bogaard A, Fraser R, Heaton THE, Wallace M, Vaiglova P, Charles M, Jones G, Evershed RP, Styrin AK, Anderson NH, Arbogast R-M, Bartosiewicz L, Gardeisen A, Kanstrup M, Maier U, Marinova E, Ninov L, Schafer M, Stephan E (2013) Crop manuring and intensive land management by Europe’s first farmers. Proceedings of the National Academy of Sciences of the United States of America 110, 12589–12594.
Crop manuring and intensive land management by Europe’s first farmers.CrossRef | 1:CAS:528:DC%2BC3sXht12ht7jF&md5=f45c301c50f1e3e89f8a98c07aae4e71CAS |

Bouwman AF, Beusen AHW, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Global Biogeochemical Cycles 23, GB0A04
Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050.CrossRef |

Brimblecombe P (1987) ‘The big smoke.’ (Methuen: London, UK)

Cattaneo LR, Bastian R, Colosi LM, Leach AM, Galloway JN (2016) Determining nitrogen removal in U.S. sewage treatment. In ‘Proceedings of the 2016 International Nitrogen Initiative Conference: solutions to improve nitrogen use efficiency for the world’, 03–07 Dec 2016, Melbourne, Australia. Available at http://www.ini2016.com/1246 [May 2017].

Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society 96, 320–325.
The influence of nitrogen oxides on the atmospheric ozone content.CrossRef |

Davidson EA, Suddick EC, Rice CW, Prokopy LS (2015) More food, low pollution (Mo Fo Lo Po): a grand challenge for the 21st century. Journal of Environmental Quality 44, 305–311.
More food, low pollution (Mo Fo Lo Po): a grand challenge for the 21st century.CrossRef | 1:CAS:528:DC%2BC2MXkvV2qurY%3D&md5=3fe31691c8cf4e4afc4fc20545afc6f8CAS |

Davis KF, Gephart J, Emery KA, Leach AM, Galloway JN, D’Odorico P (2016) Meeting future crop demand with current agricultural resources: required changes in dietary trends and production efficiencies. Global Environmental Change 39, 125–132.
Meeting future crop demand with current agricultural resources: required changes in dietary trends and production efficiencies.CrossRef |

Erisman JW (2000) ‘De vliegende geest. Ammoniak uit de landbouw en de gevolgen voor de natuur.’ (BetaText: Bergen, The Netherlands)

Erisman JW, Galloway JN, Sutton MA, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636–639.
How a century of ammonia synthesis changed the world.CrossRef | 1:CAS:528:DC%2BD1cXhtFOlur%2FM&md5=deeb4f47aad4caa3fa2b6cdb9ad725a5CAS |

Erisman JW, Galloway JN, Seitzinger S, Bleeker A, Dise NB, Petrescu R, Leach AM, De Vries W (2013) Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 368, 20130116
Consequences of human modification of the global nitrogen cycle.CrossRef |

Erisman JW, Galloway JN, Dise NB, Sutton MA, Bleeker A, Grizzett IB, Leach AM, De Vries W (2015) ‘Nitrogen: too much of a vital resource.’ (World Wildlife Fund Netherlands: Zeist, The Netherlands)

FAO (2016) FAOSTAT database collections. Food and Agriculture Organization of the United Nations, Rome, Italy. Available at http://faostat.fao.org [verified 16 August 2016].

Fowler D, Steadman CE, Stevenson D, Coyle M, Rees RM, Skiba UM, Sutton MA, Cape JN, Dore AJ, Vieno M, Simpson D, Zaehle S, Stocker BD, Rinaldi M, Facchini MC, Flechard CR, Nemitz E, Twigg M, Erisman JW, Galloway JN (2013) Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics 15, 13849–13893.

Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53, 341–356.
The nitrogen cascade.CrossRef |

Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland C, Green P, Holland E, Karl DM, Michaels AF, Porter JH, Townsend A, Vörösmarty C (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70, 153–226.
Nitrogen cycles: past, present and future.CrossRef | 1:CAS:528:DC%2BD2MXpsFShtw%3D%3D&md5=b93c31d62000a8dfda1cd4a63577c7a3CAS |

Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320, 889–892.
Transformation of the nitrogen cycle: recent trends, questions and potential solutions.CrossRef | 1:CAS:528:DC%2BD1cXlslygsbw%3D&md5=837e6d3057edd8d8622a187f811cd8feCAS |

Galloway JN, Leach AM, Bleeker A, Erisman JW (2013) A chronology of human understanding of the nitrogen cycle. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 368, 20130120
A chronology of human understanding of the nitrogen cycle.CrossRef |

Galloway JN, Winiwarter W, Leip A, Leach AM, Bleeker A, Erisman JW (2014) Nitrogen footprints: past, present and future. Environmental Research Letters 9, 115003
Nitrogen footprints: past, present and future.CrossRef |

Galloway JN, Theis TL, Doering OC (2015) Managing nitrogen pollution in the United States. A success, a challenge and an action plan. EM (Pittsburgh, Pa.) 65, 6–11.

Haagen-Smit AJ, Bradley CE, Fox MM (1953) Ozone formation in photochemical oxidation of organic substances. Industrial & Engineering Chemistry 45, 2086–2089.
Ozone formation in photochemical oxidation of organic substances.CrossRef | 1:CAS:528:DyaG2cXislan&md5=0677fdbed2fa93a8778cccd507d8e964CAS |

Hager T (2008) ‘The alchemy of air.’ (Harmony Books, NY)

Hofmanová Z, Kreutzera S, Hellenthal G, Sella C, Diekmann Y, Díez-del-Molino D, van Dorp L, Lópezb S, Kousathanas A, Link V, Kirsanow K, Cassidy LM, Martiniano R, Strobel M, Scheu A, Kotsakis K, Halstead P, Triantaphyllou S, Kyparissi-Apostolika N, Urem-Kotsou D, Ziota C, Adaktylou F, Gopalan S, Bobo DM, Winkelbach L, Blöcher J, Unterländer M, Leuenberger C, Çilingiroğlu Ç, Horejs B, Gerritsen F, Shennan SJ, Bradley DG, Currat M, Veeramah KR, Wegmann D, Thomas MG, Papageorgopoulou C, Burger J (2016) Early farmers from across Europe directly descended from Neolithic Aegeans. Proceedings of the National Academy of Sciences of the United States of America 113, 6886
Early farmers from across Europe directly descended from Neolithic Aegeans.CrossRef |

HYDE (2007) History Database of the Global Environment, http://themasites.pbl.nl/tridion/en/themasites/hyde/basicdrivingfactors/population/index-2.html [accessed September, 2016]

Ju X, Zhang F, Bao X, Romheld V, Roelcke M (2005) Utilization and management of organic wastes in Chinese agriculture: past, present and perspectives. Science in China Series C: Life Sciences 48, 965–979.

Keeney DR, Hatfield JL (2008) The nitrogen cycle, historical perspective, and current and potential future concerns. In ‘Nitrogen in the environment: sources, problems and management’. (Eds JL Hatfield, RF Follett) Paper 262, Chapter 1. (USDA-ARS/UNL Faculty)

Ladha JK, Tirol-Padre A, Reddy CK, Cassman KG, Verma S, Powlson DS, Pathak H (2016) Global nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systems. Scientific Reports 6, 19355
Global nitrogen budgets in cereals: a 50-year assessment for maize, rice, and wheat production systems.CrossRef | 1:CAS:528:DC%2BC28XhtFOhs7k%3D&md5=3fd27db5160627968b44afd9854975f5CAS |

Larsen C (2009) Emergence and evolution of agriculture: the impact in human health and lifestyle. In ‘Adequate food for all: culture, science, and technology of food in the 21st century’. (Eds W Pond, B Nichols, D Brown) pp. 3–13. (CRC Press: Boca Raton, FL)

Leach AM, Galloway JN, Bleeker A, Erisman JW, Kohn R, Kitzes J (2012) A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development 1, 40–66.
A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment.CrossRef |

Leach AM, Majidi AN, Galloway JN, Greene AJ (2013) Towards institutional sustainability: a nitrogen footprint model for a university. Sustainability: The Journal of Record 6, 211–219.
Towards institutional sustainability: a nitrogen footprint model for a university.CrossRef |

Leach AM, Emery K, Gephart J, Davis KF, Erisman JW, Leip A, Pace ML, D’Odorico P, Carr J, Cattell Noll L, Castner E, Galloway JN (2016) Environmental impact food labels using carbon, nitrogen, and water footprints. Food Policy 61, 213–223.
Environmental impact food labels using carbon, nitrogen, and water footprints.CrossRef |

Leigh GJ (2004) ‘The world’s greatest fix: a history of nitrogen and agriculture.’ (Oxford University Press: Oxford)

Lersch BM (1864) ‘Hydro-Chemie oder Handbuch der Chemie der naturlichen Wasser.’ (Verlag Hirschwald: Berlin)

Liang X, Leach AM, Galloway JN, Gu B, Lam SK, Chen D (2016) Beef and coal are key drivers of Australia’s high nitrogen footprint. Science Reports 6, 39644
Beef and coal are key drivers of Australia’s high nitrogen footprint.CrossRef | 1:CAS:528:DC%2BC28XitFGiurnM&md5=3e024b0817e0e16424d49bf1998c5016CAS |

MacDonald GK, Bennett EM, Carpenter SR (2012) Embodied phosphorus and the global connection of United States agriculture. Environmental Research Letters 7, 044024
Embodied phosphorus and the global connection of United States agriculture.CrossRef |

Mackenzie FT (2011) ‘Our changing planet: an introduction to earth system science and global environmental change.’ 4th edn. (Prentice Hall/Pearson: Upper Saddle River)

Metson GS, Bennett EM, Elser JS (2012) The role of diet in phosphorus demand. Environmental Research Letters 7, 044043
The role of diet in phosphorus demand.CrossRef |

Ramanathan V, Cicerone RJ, Singh HB, Kiehl JT (1985) Trace gas trends and their potential role in climate change. Journal of Geophysical Research 90, 5547–5566.
Trace gas trends and their potential role in climate change.CrossRef | 1:CAS:528:DyaL2MXls1Ggu78%3D&md5=45afacd7839a3380dc929a3ed7c371e2CAS |

Rulli MC, Saviori A, D’Odorico P (2013) Global land and water grabbing. Proceedings of the National Academy of Sciences of the United States of America 110, 892–897.
Global land and water grabbing.CrossRef | 1:CAS:528:DC%2BC3sXhs1yhsLk%3D&md5=3c3337c0dcb81e04d5fdd95199b59591CAS |

Ryther JH (1954) The ecology of phytoplankton blooms in Moriches Bay and Great South Bay, Long Island, New York. The Biological Bulletin 106, 198–209.
The ecology of phytoplankton blooms in Moriches Bay and Great South Bay, Long Island, New York.CrossRef |

Shibata H, Cattaneo LR, Leach AM, Galloway JN (2014) First approach to the Japanese nitrogen footprint model to predict the loss of nitrogen to the environment. Environmental Research Letters 9, 115013
First approach to the Japanese nitrogen footprint model to predict the loss of nitrogen to the environment.CrossRef |

Smil V (2001) ‘Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production.’ (MIT Press: Cambridge, MA)

Smith BD (1995) ‘The emergence of agriculture.’ Scientific American Library Series No. 24. (Scientific American Library: New York)

Snelders HAM (1984) Landbouw en scheikunde in Nederland in de voor-Wageningse periode (1800–1876). AAG Bijdragen 24, 59–104.

Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292, 281–284.
Forecasting agriculturally driven global environmental change.CrossRef | 1:CAS:528:DC%2BD3MXivVygsr0%3D&md5=0990526336e0a5937988160218efee40CAS |

UN (2016) UN projects world population to reach 8.5 billion by 2030, driven by growth in developing countries. Available at http://www.un.org/apps/news/story.asp?NewsID=51526#.V7NFd2Oirdk [verified 16 August 2016].

Von Liebig J (1861) Es ist ja dies die Spitze meines lebens. Essay.

Wilson EO (Ed.) (1988) ‘Biodiversity.’ (National Academy of Sciences/Smithsonian Institution: Washington DC, USA)

Winiwarter W, Erisman JW, Galloway JN, Klimont Z, Sutton M (2013) Estimating environmental loads of reactive nitrogen in the 21st century. Climatic Change
Estimating environmental loads of reactive nitrogen in the 21st century.CrossRef |

Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528, 51–59.



Rent Article (via Deepdyve) Export Citation Cited By (1)