Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Relationships between extractable Al, selected soil properties, pH buffer capacity and lime requirement in some acidic Queensland soils

RL Aitken

Australian Journal of Soil Research 30(2) 119 - 130
Published: 1992

Abstract

The objectives of this study were to examine (1) interrelationships between various forms of extractable A1 and selected soil properties, (2) the contribution of extractable A1 to pH buffer capacity, and (3) investigate the use of extractable A1 to predict lime requirement. Aluminium was extracted from each of 60 Queensland soils with a range of chloride salts: 1 M KCl (AlK), 0.5 M CuCl2 (AlCu), 0.33 M LaCl3 (AlLa) and 0.01 M CaCl2 (AlCa). The amounts of A1 extracted were in the order AlCu > AlLa > Alk > AlCa. Little or no A1 was extracted by KC1 or Lac13 in soils with pHw values greater than 5.5 , whereas CuCl2 extracted some A1 irrespective of soil pH. The greater amounts of A1 extracted by CuCl2 were attributed mainly to A1 from organic matter, even though all of the soils were mineral soils (organic carbon 54.7%). Both AlCu and AlLa, were significantly (P < 0.001) correlated with organic carbon, whereas none of the extractable A1 measures was correlated with clay content. AlK and A~L, were poorly correlated to pH buffer capacity. The linear relationship between AlCu and pH buffer capacity (r2 = 0.49) obtained in this study supports the view of previous researchers that the hydrolysis of A1 adsorbed by organic matter is a source of pH buffering in soils. However, the change in CEC with pH accounted for 76% of the variation in pH buffer capacity, indicating that other mechanisms such as deprotonation of organic groups and variable charge minerals are also involved in pH buffering. The ability of CuCl2 and LaCl3extractable Al to estimate lime requirement depended on the target pH. The results suggest that lime requirements based on neutralization of AlLa would be sufficient to raise pHw to around 5.5, whereas requirements based on neutralization of AlCu substantially overestimated the actual lime requirement to pHw 5.5, but gave a reasonable estimation of the lime requirement to pHw 6 5.

Keywords: Extractable Aluminum; Ph Buffer Capacity; Lime Requirement;

https://doi.org/10.1071/SR9920119

© CSIRO 1992

Committee on Publication Ethics


Rent Article (via Deepdyve) Export Citation Cited By (48) Get Permission

View Dimensions