Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches

Articles citing this paper

Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate

Rute F. Domingos A B C , Caroline Peyrot A and Kevin J. Wilkinson A
+ Author Affiliations
- Author Affiliations

A Département de Chimie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, QC, H3C 3J7, Canada.

B Present address: Centro de Química Estrutural, Grupo VI, Instituto Superior Técnico, Av. Rovisco Pais #1, PT-1040-001 Lisbon, Portugal.

C Corresponding author. Email: rute.domingos@ist.utl.pt

Environmental Chemistry 7(1) 61-66 https://doi.org/10.1071/EN09110
Submitted: 28 August 2009  Accepted: 22 December 2009   Published: 22 February 2010



69 articles found in Crossref database.

Aqueous Hg2+ associates with TiO2 nanoparticles according to particle size, changes particle agglomeration, and becomes less bioavailable to zebrafish
Boran Halis, Boyle David, Altinok Ilhan, Patsiou Danae, Henry Theodore B.
Aquatic Toxicology. 2016 174 p.242
Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing
von der Kammer Frank, Ottofuelling Stephanie, Hofmann Thilo
Environmental Pollution. 2010 158(12). p.3472
Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters
Li Ling, Sillanpää Markus, Risto Maarit
Environmental Pollution. 2016 219 p.132
Stability of Titanium Dioxide Nanoparticle Agglomerates in Transitional Waters and Their Effects Towards Plankton from Lagoon of Venice (Italy)
Perstrimaux Clémentine, Le Faucheur Séverine, Mortimer Monika, Stoll Serge, Aubry Fabrizio Bernardi, Botter Margherita, Zonta Roberto, Slaveykova Vera I.
Aquatic Geochemistry. 2015 21(2-4). p.343
Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phase
Liu Xuyang, Chen Gexin, Su Chunming
Journal of Colloid and Interface Science. 2011 363(1). p.84
Aqueous aggregation behavior of citric acid coated magnetite nanoparticles: Effects of pH, cations, anions, and humic acid
Liu Juanjuan, Dai Chong, Hu Yandi
Environmental Research. 2018 161 p.49
Surface speciation of myo-inositol hexakisphosphate adsorbed on TiO2 nanoparticles and its impact on their colloidal stability in aqueous suspension: A comparative study with orthophosphate
Wan Biao, Yan Yupeng, Liu Fan, Tan Wenfeng, He Jiajie, Feng Xionghan
Science of The Total Environment. 2016 544 p.134
Effects of water chemistry on the destabilization and sedimentation of commercial TiO2 nanoparticles: Role of double-layer compression and charge neutralization
Hsiung Chia-En, Lien Hsing-Lung, Galliano Alexander Edward, Yeh Chia-Shen, Shih Yang-hsin
Chemosphere. 2016 151 p.145
Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: a review of interaction forces, experimental approaches, and influencing factors
Ma Chengxue, Huangfu Xiaoliu, He Qiang, Ma Jun, Huang Ruixing
Environmental Science and Pollution Research. 2018 25(33). p.33056
Transcriptome Sequencing (RNA-seq) Analysis of the Effects of Metal Nanoparticle Exposure on the Transcriptome of Chlamydomonas reinhardtii
Simon Dana F., Domingos Rute F., Hauser Charles, Hutchins Colin M., Zerges William, Wilkinson Kevin J.
Applied and Environmental Microbiology. 2013 79(16). p.4774
Harnessing Nanoscale Surface Interactions (2019)
Gentile Guillermina J., Fidalgo de Cortalezzi María M.
Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization
Xu Fang
Chemosphere. 2018 212 p.662
Toxic effect of different types of titanium dioxide nanoparticles on Ceriodaphnia dubia in a freshwater system
Iswarya Velu, Palanivel Abirami, Chandrasekaran Natarajan, Mukherjee Amitava
Environmental Science and Pollution Research. 2019 26(12). p.11998
Commercial Titanium Dioxide Nanoparticles in Both Natural and Synthetic Water: Comprehensive Multidimensional Testing and Prediction of Aggregation Behavior
Ottofuelling Stephanie, Von Der Kammer Frank, Hofmann Thilo
Environmental Science & Technology. 2011 45(23). p.10045
Effect of freeze/thaw on aggregation and transport of nano-TiO2 in saturated porous media
Farner Jeffrey M., De Tommaso Jacopo, Mantel Heather, Cheong Rachel S., Tufenkji Nathalie
Environmental Science: Nano. 2020 7(6). p.1781
Factors impacting the aggregation/agglomeration and photocatalytic activity of highly crystalline spheroid- and rod-shaped TiO2 nanoparticles in aqueous solutions
Degabriel Thomas, Colaço Elodie, Domingos Rute F., El Kirat Karim, Brouri Dalil, Casale Sandra, Landoulsi Jessem, Spadavecchia Jolanda
Physical Chemistry Chemical Physics. 2018 20(18). p.12898
Aggregation of ferrihydrite nanoparticles: Effects of pH, electrolytes,and organics
Liu Juanjuan, Louie Stacey Marie, Pham Christopher, Dai Chong, Liang Dongli, Hu Yandi
Environmental Research. 2019 172 p.552
Synergistic effects of phosphorus and humic acid on the transport of anatase titanium dioxide nanoparticles in water-saturated porous media
Chen Ming, Xu Nan, Christodoulatos Christos, Wang Dengjun
Environmental Pollution. 2018 243 p.1368
Encyclopedia of Analytical Chemistry (2012)
Sanchis Josep, Farre Marinella, Barcelo Damia
The concentration-dependent aggregation of Ag NPs induced by cystine
Afshinnia K., Gibson I., Merrifield R., Baalousha M.
Science of The Total Environment. 2016 557-558 p.395
TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability
Loosli Frédéric, Le Coustumer Philippe, Stoll Serge
Water Research. 2013 47(16). p.6052
Finde den Unterschied: synthetische und natürliche Nanopartikel in der Umwelt – Freisetzung, Verhalten und Verbleib
Wagner Stephan, Gondikas Andreas, Neubauer Elisabeth, Hofmann Thilo, von der Kammer Frank
Angewandte Chemie. 2014 126(46). p.12604
Isoelectric points and points of zero charge of metal (hydr)oxides: 50years after Parks' review
Kosmulski Marek
Advances in Colloid and Interface Science. 2016 238 p.1
Colloidal stability and aggregation kinetics of nanocrystal CdSe/ZnS quantum dots in aqueous systems: Effects of ionic strength, electrolyte type, and natural organic matter
Li Chunyan, Hassan Asra, Palmai Marcell, Snee Preston, Baveye Philippe C., Darnault Christophe J. G.
SN Applied Sciences. 2022 4(4).
Effect of electrolyte valency, alginate concentration and pH on engineered TiO2 nanoparticle stability in aqueous solution
Loosli Frédéric, Le Coustumer Philippe, Stoll Serge
Science of The Total Environment. 2015 535 p.28
Agglomeration of Ag and TiO2 nanoparticles in surface and wastewater: Role of calcium ions and of organic carbon fractions
Topuz Emel, Traber Jacqueline, Sigg Laura, Talinli Ilhan
Environmental Pollution. 2015 204 p.313
Scientific rationale for the development of an OECD test guideline on engineered nanomaterial stability
Abdolahpur Monikh Fazel, Praetorius Antonia, Schmid Andrea, Kozin Philipp, Meisterjahn Boris, Makarova Ekaterina, Hofmann Thilo, von der Kammer Frank
NanoImpact. 2018 11 p.42
Influence of environmental factors on nanotoxicity and knowledge gaps thereof
Ren Chaoxiu, Hu Xiangang, Zhou Qixing
NanoImpact. 2016 2 p.82
Behavior of TiO2 Released from Nano-TiO2-Containing Paint and Comparison to Pristine Nano-TiO2
Al-Kattan Ahmed, Wichser Adrian, Zuin Stefano, Arroyo Yadira, Golanski Luana, Ulrich Andrea, Nowack Bernd
Environmental Science & Technology. 2014 48(12). p.6710
Dissolved organic matter reduces CuO nanoparticle toxicity to duckweed in simulated natural systems
Rippner Devin A., Green Peter G., Young Thomas M., Parikh Sanjai J.
Environmental Pollution. 2018 234 p.692
Influence of different types of natural organic matter on titania nanoparticle stability: effects of counter ion concentration and pH
Gallego-Urrea Julián A., Perez Holmberg Jenny, Hassellöv Martin
Environ. Sci.: Nano. 2014 1(2). p.181
Spot the Difference: Engineered and Natural Nanoparticles in the Environment—Release, Behavior, and Fate
Wagner Stephan, Gondikas Andreas, Neubauer Elisabeth, Hofmann Thilo, von der Kammer Frank
Angewandte Chemie International Edition. 2014 53(46). p.12398
Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter
Erhayem Mohamed, Sohn Mary
Science of The Total Environment. 2014 468-469 p.249
Environmental Fate of Metal Nanoparticles in Estuarine Environments
Arienzo Michele, Ferrara Luciano
Water. 2022 14(8). p.1297
Release of phosphorous impurity from TiO2 anatase and rutile nanoparticles in aquatic environments and its implications
Liu Xuyang, Chen Gexin, Erwin Justin G., Adam Nadia K., Su Chunming
Water Research. 2013 47(16). p.6149
Size matters – The phototoxicity of TiO2 nanomaterials
Wyrwoll Anne J., Lautenschläger Petra, Bach Alexander, Hellack Bryan, Dybowska Agnieszka, Kuhlbusch Thomas A.J., Hollert Henner, Schäffer Andreas, Maes Hanna M.
Environmental Pollution. 2016 208 p.859
Natural attenuation of TiO2 nanoparticles in a fractured hard-rock
Ollivier Patrick, Pauwels Hélène, Wille Guillaume, Devau Nicolas, Braibant Gilles, Cary Lise, Picot-Colbeaux Géraldine, Labille Jérôme
Journal of Hazardous Materials. 2018 359 p.47
Manufactured nanoparticles in the environment
Lead Jamie R.
Environmental Chemistry. 2010 7(1). p.1
Investigations into titanium dioxide nanoparticle and pesticide interactions in aqueous environments
Ilina Svetlana M., Ollivier Patrick, Slomberg Danielle, Baran Nicole, Pariat Anne, Devau Nicolas, Sani-Kast Nicole, Scheringer Martin, Labille Jérôme
Environmental Science: Nano. 2017 4(10). p.2055
Company Profile: NanoSight: delivering practical solutions for biological nanotechnology
Carr Bob, Warren Jeremy
Nanomedicine. 2012 7(8). p.1129
Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: The quest for advanced analytics and interdisciplinary concepts
Schaumann Gabriele E., Philippe Allan, Bundschuh Mirco, Metreveli George, Klitzke Sondra, Rakcheev Denis, Grün Alexandra, Kumahor Samuel K., Kühn Melanie, Baumann Thomas, Lang Friederike, Manz Werner, Schulz Ralf, Vogel Hans-Jörg
Science of The Total Environment. 2015 535 p.3
Attenuation of Microbial Stress Due to Nano-Ag and Nano-TiO2 Interactions under Dark Conditions
Wilke Carolyn M., Tong Tiezheng, Gaillard Jean-François, Gray Kimberly A.
Environmental Science & Technology. 2016 50(20). p.11302
Combined factors influencing the surface charge and aggregation behaviors of TiO2 nanoparticles in the presence of humic acid and UV irradiation
Tan Liqiang, Liu Zhengjie, Zhou Chuyun, Ding Lu
Journal of Nanoparticle Research. 2021 23(8).
Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli
Li Mei, Lin Daohui, Zhu Lizhong
Environmental Pollution. 2013 173 p.97
Effect of natural organic matter on the disagglomeration of manufactured TiO2 nanoparticles
Loosli Frédéric, Le Coustumer Philippe, Stoll Serge
Environmental Science: Nano. 2014 1(2). p.154
Effect of surfactants, pH and water hardness on the surface properties and agglomeration behavior of engineered TiO2 nanoparticles
Loosli Frédéric, Stoll Serge
Environmental Science: Nano. 2017 4(1). p.203
Effect of Ions on Removal of TiO2Nanoparticles by Coagulation and Microfiltration
Zhang Chunpeng, Lohwacharin Jenyuk, Takizawa Satoshi
Environmental Engineering Science. 2018 35(5). p.420
Aggregation and charging of sulfate and amidine latex particles in the presence of oxyanions
Sugimoto Takuya, Cao Tianchi, Szilagyi Istvan, Borkovec Michal, Trefalt Gregor
Journal of Colloid and Interface Science. 2018 524 p.456
Impact of alginate concentration on the stability of agglomerates made of TiO2 engineered nanoparticles: Water hardness and pH effects
Loosli Frédéric, Le Coustumer Philippe, Stoll Serge
Journal of Nanoparticle Research. 2015 17(1).
Predictions of TiO2-driven migration of Se(IV) based on an integrated study of TiO2 colloid stability and Se(IV) surface adsorption
Benedicto Ana, Missana Tiziana, Degueldre Claude
Science of The Total Environment. 2013 449 p.214
Nanomaterials for Environmental Protection (2014)
Domingos Rute F., Pinheiro José P.
UV/TiO2 photocatalysis as post-treatment of anaerobic membrane bioreactor effluent for reuse
Huang Yu, Jeffrey Paul, Pidou Marc
Journal of Environmental Management. 2024 356 p.120628
Effects of dominant material properties on the stability and transport of TiO2nanoparticles and carbon nanotubes in aquatic environments: from synthesis to fate
Liu Xuyang, Chen Gexin, Keller Arturo A., Su Chunming
Environ. Sci.: Processes Impacts. 2013 15(1). p.169
Anions influence the extraction of rutile nanoparticles from synthetic and lake water
Zhao Tianrui, Liu Fangyuan, Zhang Chunpeng, Chen Xiaochen
RSC Advances. 2019 9(29). p.16767
Highly Scattering Hierarchical Porous Polymer Microspheres with a High-Refractive Index Inorganic Surface for a Soft-Focus Effect
Yoon Joonsik, Lee Ji Hyun, Lee Jun Bae, Lee Jun Hyup
Polymers. 2020 12(10). p.2418
A systematic evaluation of agglomeration of Ag and TiO 2 nanoparticles under freshwater relevant conditions
Topuz Emel, Sigg Laura, Talinli Ilhan
Environmental Pollution. 2014 193 p.37
A Review of the Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment
Peijnenburg Willie J. G. M., Baalousha Mohammed, Chen Jingwen, Chaudry Qasim, Von der kammer Frank, Kuhlbusch Thomas A. J., Lead Jamie, Nickel Carmen, Quik Joris T. K., Renker Mareile, Wang Zhuang, Koelmans Albert A.
Critical Reviews in Environmental Science and Technology. 2015 45(19). p.2084
Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview
Vale Gonçalo, Mehennaoui Kahina, Cambier Sebastien, Libralato Giovanni, Jomini Stéphane, Domingos Rute F.
Aquatic Toxicology. 2016 170 p.162
Reproductive and behavioral responses of earthworms exposed to nano‐sized titanium dioxide in soil
McShane Heather, Sarrazin Manon, Whalen Joann K., Hendershot William H., Sunahara Geoffrey I.
Environmental Toxicology and Chemistry. 2012 31(1). p.184
Heteroagglomeration of nanosilver with colloidal SiO2 and clay
Maillette Sébastien, Peyrot Caroline, Purkait Tapas, Iqbal Muhammad, Veinot Jonathan G. C., Wilkinson Kevin J.
Environmental Chemistry. 2017 14(1). p.1
Influence of soil porewater properties on the fate and toxicity of silver nanoparticles to Caenorhabditis elegans
Schultz Carolin L., Lahive Elma, Lawlor Alan, Crossley Alison, Puntes Victor, Unrine Jason M., Svendsen Claus, Spurgeon David J.
Environmental Toxicology and Chemistry. 2018 37(10). p.2609
Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles
Erhayem Mohamed, Sohn Mary
Science of The Total Environment. 2014 470-471 p.92
An experimental study on the aggregation of TiO2 nanoparticles under environmentally relevant conditions
Romanello Marina Belen, Fidalgo de Cortalezzi Maria M.
Water Research. 2013 47(12). p.3887
Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing
Schultz Aaron G., Boyle David, Chamot Danuta, Ong Kimberly J., Wilkinson Kevin J., McGeer James C., Sunahara Geoff, Goss Greg G.
Environmental Chemistry. 2014 11(3). p.207
Stability and aggregation of silver and titanium dioxide nanoparticles in seawater: Role of salinity and dissolved organic carbon
Wang Huanhua, Burgess Robert M., Cantwell Mark G., Portis Lisa M., Perron Monique M., Wu Fengchang, Ho Kay T.
Environmental Toxicology and Chemistry. 2014 33(5). p.1023
Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles
Thio Beng Joo Reginald, Zhou Dongxu, Keller Arturo A.
Journal of Hazardous Materials. 2011 189(1-2). p.556
Properties of residual titanium dioxide nanoparticles after extended periods of mixing and settling in synthetic and natural waters
Zhang Chunpeng, Lohwacharin Jenyuk, Takizawa Satoshi
Scientific Reports. 2017 7(1).
QCM-D and NanoTweezer measurements to characterize the effect of soil cellulase on the deposition of PEG-coated TiO2nanoparticles in model subsurface environments
Akanbi M. O., Hernandez L. M., Mobarok M. H., Veinot J. G. C., Tufenkji N.
Environmental Science: Nano. 2018 5(9). p.2172
Count, size and visualize nanoparticles
Malloy Andrew
Materials Today. 2011 14(4). p.170

Committee on Publication Ethics


Abstract Supplementary MaterialSupplementary Material (71 KB) Export Citation Get Permission