Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches

Using FlFFF and aTEM to determine trace metal–nanoparticle associations in riverbed sediment

K. L. Plathe A F , F. von der Kammer B , M. Hassellöv C , J. Moore D , M. Murayama E , T. Hofmann B and M. F. Hochella Jr. A

A Department of Geosciences, Virginia Tech, 4044 Derring Hall, Blacksburg, VA 24061, USA.

B Department for Environmental Geosciences, University of Vienna, Althanstraße 14 UZ AII, 1090 Vienna, Austria.

C Department of Chemistry, University of Göteborg, SE-412 96, Göteborg, Sweden.

D Department of Geology, University of Montana, 32 Campus Drive # 1296, Missoula, MT 59812, USA.

E Institute for Critical Technology and Applied Science, Nanoscale Characterisation and Fabrication Laboratory, Virginia Tech, 1991 Kraft Drive, Blacksburg, VA 24061, USA.

F Corresponding author. Email: plathekl@vt.edu

Environmental Chemistry 7(1) 82-93 http://dx.doi.org/10.1071/EN09111
Submitted: 1 September 2009  Accepted: 22 December 2009   Published: 22 February 2010

Environmental context. Determining associations between trace metals and nanoparticles in contaminated systems is important in order to make decisions regarding remediation. This study analysed contaminated sediment from the Clark Fork River Superfund Site and discovered that in the <1-μm fraction the trace metals were almost exclusively associated with nanoparticulate Fe and Ti oxides. This information is relevant because nanoparticles are often more reactive and show altered properties compared with their bulk equivalents, therefore affecting metal toxicity and bioavailability.

Abstract. Analytical transmission electron microscopy (aTEM) and flow field flow fractionation (FlFFF) coupled to multi-angle laser light scattering (MALLS) and high-resolution inductively coupled plasma mass spectroscopy (HR-ICPMS) were utilised to elucidate relationships between trace metals and nanoparticles in contaminated sediment. Samples were obtained from the Clark Fork River (Montana, USA), where a large-scale dam removal project has released reservoir sediment contaminated with toxic trace metals (namely Pb, Zn, Cu and As) which had accumulated from a century of mining activities upstream. An aqueous extraction method was used to recover nanoparticles from the sediment for examination; FlFFF results indicate that the toxic metals are held in the nano-size fraction of the sediment and their peak shapes and size distributions correlate best with those for Fe and Ti. TEM data confirms this on a single nanoparticle scale; the toxic metals were found almost exclusively associated with nano-size oxide minerals, most commonly brookite, goethite and lepidocrocite.

Additional keywords: contaminated sediments, electron microscopy, field flow fractionation, ICPMS.


[1]  Haus K. L.Hooper R. L.Strumness L. A.Mahoney J. B.2008Analysis of arsenic speciation in mine contaminated lacustrine sediment using selective sequential extraction, HR-ICPMS and TEM.Appl. Geochem.23692doi:10.1016/J.APGEOCHEM.2007.11.005

[2]  Hochella M. F.Moore J. N.Golla U.Putnis A.1999A TEM study of samples from acid mine drainage systems: metal–mineral association with implications for transport.Geochim. Cosmochim. Acta633395doi:10.1016/S0016-7037(99)00260-4

[3]  Hofmann T.Schuwirth N.2008Zn and Pb release of sphalerite (ZnS)-bearing mine waste tailings.J. Soils Sediments8433doi:10.1007/S11368-008-0052-Y

[4]  Schuwirth N.Voegelin A.Kretzschmar R.Hofmann T.2007Vertical distribution and speciation of trace metals in weathering flotation residues of a zinc/lead sulfide mine.J. Environ. Qual.3661doi:10.2134/JEQ2006.0148

[5]  Hassellov M.von der Kammer F.2008Iron oxide as geochemical nanovectors for metal transport in soil-river systems.Elements4401doi:10.2113/GSELEMENTS.4.6.401

[6]  Kretzschmar R.Schafer T.2005Metal retention and transport on colloidal particles in the environment.Elements1205doi:10.2113/GSELEMENTS.1.4.205

[7]  Lyven B.Hassellov M.Turner D. R.Haraldsson C.Andersson K.2003Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow field-flow fractionation coupled to ICPMS.Geochim. Cosmochim. Acta673791doi:10.1016/S0016-7037(03)00087-5

[8]  Vignati D. A. L.Dworak T.Benoit F.Koukal B.Loizeau J.Minouflet M.Camusso M. I.Polesello S.Dominik J.2005Assessment of the geochemical role of colloids and their impact on contaminant toxicity in freshwaters: an example from the Lambro-Po system (Italy).Environ. Sci. Technol.39489doi:10.1021/ES049322J

[9]  Wang W.Wen B.Zhang S.Shan X.2003Distribution of heavy metals in water and soil solutions based on colloid-size fractionation.Int. J. Environ. Anal. Chem.83357doi:10.1080/0306731031000104704

[10]  Weber F. A.Voegelin A.Kaegi R.Kretzschmar R.2009Contaminant mobilization by metallic copper and metal sulphide colloids in flooded soil.Nat. Geosci.2267doi:10.1038/NGEO476

[11]  Knighton D., Fluvial Forms and Processes: A New Perspective 1998 (Hodder Arnold).

[12]  Hochella M. F.Lower S. K.Maurice P. A.Penn R. L.Sahai N.Sparks D. L.Twinning B. S.2008Nanominerals, mineral nanoparticles, and Earth systems.Science3191631doi:10.1126/SCIENCE.1141134

[13]  Wigginton N. S.Haus K. L.Hochella M. F.2007Aquatic environmental nanoparticles.J. Environ. Monit.91306doi:10.1039/B712709J

[14]  Hofmann T.Baumann T.Bundschuh T.von der Kammer F.Leis A.Schmitt D.Schaefer T.Thieme J.Totsche K. U.Zaenker H.2003Aquatic colloids 1: definition and relevance – a review.Grundwasser8203doi:10.1007/S00767-003-0001-Z

[15]  Hofmann T.Baumann T.Bundschuh T.von der Kammer F.Leis A.Schmitt D.Schaefer T.Thieme J.Totsche K. U.Zaenker H.2003Aquatic colloids 2: sampling and characterization – a review.Grundwasser8213doi:10.1007/S00767-003-0002-Y

[16]  Madden A. S.Hochella M. F.2005A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles.Geochim. Cosmochim. Acta69389doi:10.1016/J.GCA.2004.06.035

[17]  O’Reilly S. E.Hochella M. F.2003Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides.Geochim. Cosmochim. Acta674471doi:10.1016/S0016-7037(03)00413-7

[18]  Stipp S. L. S.Hansen M.Kristensen R.Hochella M. F.Bennedsen L.Dideriksen K.Balic-Zunic T.Leonard D.Mathieu H. J.2002Behaviour of Fe-oxides relevant to contaminant uptake in the environment.Chem. Geol.190321doi:10.1016/S0009-2541(02)00123-7

[19]  Villalobos M.Bargar J.Sposito G.2005Trace metal retention on biogenic manganese oxide nanoparticles.Elements1223doi:10.2113/GSELEMENTS.1.4.223

[20]  Villalobos M.Bargar J.Sposito G.2005Mechanisms of Pb(II) sorption on a biogenic manganese oxide.Environ. Sci. Technol.39569doi:10.1021/ES049434A

[21]  Waychunas G. A.Kim C. S.Banfield J. F.2005Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms.J. Nanopart. Res.7409doi:10.1007/S11051-005-6931-X

[22]  Hartmann N. B., von der Kammer F., Hofmann T., Baalousha M., Ottofuelling S., Baun A., Algal testing of titanium dioxide nanoparticles – testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology, in press. doi:10.1016/J.TOX.2009.08.008

[23]  Moore J. N.Luoma S. N.1990Hazardous wastes from large-scale metal extraction – a case study.Environ. Sci. Technol.241278doi:10.1021/ES00079A001

[24]  Wilcox A. C., Brinkerhoff D., Woelfle-Erskine C., Initial geomorphic responses to removal of Milltown Dam, Clark Fork River, Montana, USA. Eos Trans. AGU 2008, 89(53). Fall Meet. Suppl. Abstract H41I-07.

[25]  Dodge K. A., Hornberger M. I., Dyke J. L., Water-quality, bed-sediment, and biological data (October 2004 through September 2005) and statistical summaries of data for streams in the upper Clark Fork basin, Montana. Open-File Report 2006–1266 2006 (US Geological Survey: Montana, USA).

[26]  Dodge K. A., Hornberger M. I., Dyke J. L., Water-quality, bed-sediment, and biological data (October 2003 through September 2004) and statistical summaries of data for streams in the upper Clark Fork basin, Montana. Open-File Report 2005–1356 2005 (US Geological Survey: Montana, USA).

[27]  Dodge K. A., Hornberger M. I., Dyke J. L., Water-quality, bed-sediment, and biological data (October 2005 through September 2006) and statistical summaries of long-term data for streams in the upper Clark Fork basin, Montana. Open-File Report 2007–1301 2007 (US Geological Survey: Montana, USA).

[28]  Hochella M. F.Kasama T.Putnis A.Putnis C. V.Moore J. N.2005Environmentally important, poorly crystalline Fe/Mn hydrous oxides: ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex.Am. Mineral.90718doi:10.2138/AM.2005.1591

[29]  Hochella M. F.Moore J. N.Putnis C. V.Putnis A.Kasama T.Eberl D. D.2005Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: implications for metal transport and bioavailability.Geochim. Cosmochim. Acta691651doi:10.1016/J.GCA.2004.07.038

[30]  Genovese A.Mellini M.2007Ferrihydrite flocs, native copper nanocrystals and spontaneous remediation in the Fosso dei Noni stream, Tuscany, Italy.Appl. Geochem.221439doi:10.1016/J.APGEOCHEM.2007.01.007

[31]  Giddings J. C.1993Field-flow fractionation – analysis of macromolecular, colloidal, and particulate materials.Science2601456doi:10.1126/SCIENCE.8502990

[32]  Hassellov M., von der Kammer F., Beckett R., Characterisation of aquatic colloids and macromolecules by field flow fractionation, in Environmental Colloids and Particles: Behaviour, Separation and Characterisation (Eds J. R. Lead, K. J. Wilkinson) 2007, pp. 223–276 (Wiley: Chichester, UK).

[33]  Schimpf M., Caldwell K., Giddings J. C., Field-Flow Fractionation Handbook 2000 (Wiley: New York).

[34]  von der Kammer F.Baborowski M.Friese K.2005Application of a high-performance liquid chromatography fluorescence detector as a nephelometric turbidity detector following Field-Flow Fractionation to analyse size distributions of environmental colloids.J. Chromatogr. A110081doi:10.1016/J.CHROMA.2005.09.013

[35]  Gimbert L. J.Haygarth P. M.Worsfold P. J.2008Application of flow field-flow fractionation and laser sizing to characterize soil colloids in drained and undrained lysimeters.J. Environ. Qual.371656doi:10.2134/JEQ2007.0583

[36]  Dubascoux S.von der Kammer F.Le Hecho I.Gautier M. P.Lespes G.2008Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation.J. Chromatogr. A1206160doi:10.1016/J.CHROMA.2008.07.032

[37]  Dubascoux S.Le Hecho I.Gautier M. P.Lespes G.2008On-line and off-line quantification of trace elements associated to colloids by As-Fl-FFF and ICP-MS.Talanta7760doi:10.1016/J.TALANTA.2008.05.050

[38]  Baalousha M.Lead J. R.2007Characterization of natural aquatic colloids (<5 nm) by flow-field flow fractionation and atomic force microscopy.Environ. Sci. Technol.411111doi:10.1021/ES061766N

[39]  Baalousha M.Lead J. R.2007Size fractionation and characterization of natural aquatic colloids and nanoparticles.Sci. Total Environ.38693doi:10.1016/J.SCITOTENV.2007.05.039

[40]  Baalousha M.von der Kammer F.Motelica-Heino M.Hilal H. S.Le Coustumer P.2006Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering.J. Chromatogr. A1104272doi:10.1016/J.CHROMA.2005.11.095

[41]  von der Kammer F.Baborowski M.Friese K.2005Field-flow fractionation coupled to multi-angle laser light scattering detectors: applicability and analytical benefits for the analysis of environmental colloids.Anal. Chim. Acta552166doi:10.1016/J.ACA.2005.07.049

[42]  Hassellov M.2005Relative molar mass distributions of chromophoric colloidal organic matter in coastal seawater determined by Flow Field-Flow Fractionation with UV absorbance and fluorescence detection.Mar. Chem.94111doi:10.1016/J.MARCHEM.2004.07.012

[43]  von der Kammer F., Forstner U., Effects of redox potential on natural organic matter: first results from flow-FFF-multi-detector analysis (4F-MDA), in 6th International FZK/TNO Conference on Contaminated Soil (ConSoil 98), Edinburgh, UK, 17–21 May 1998 (Thomas Telford Publishing: London).

[44]  von der Kammer F., Forstner U., Natural colloid characterization using flow-field-flow-fractionation followed by multi-detector analysis, in 2nd IAWQ Specialist Group Conference on Contaminated Sediments, Rotterdam, the Netherlands, 7–11 September (Eds W. Calmano, P. Roeters, T. Vellinga) 1997, Vol. 37 (Pergamon-Elsevier Science Ltd: Oxford, UK).

[45]  Rameshwar T.Samal S.Lee S.Kim S.Cho J.Kim I. S.2006Determination of the size of water-soluble nanoparticles and quantum dots by field-flow fractionation.J. Nanosci. Nanotechnol.62461doi:10.1166/JNN.2006.544

[46]  Bouby M.Geckeis H.Geyer F. W.2008Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles.Anal. Bioanal. Chem.3921447doi:10.1007/S00216-008-2422-0

[47]  Stolpe B.Hassellov M.Andersson K.Turner D. R.2005High resolution ICPMS as an on-line detector for flow field-flow fractionation; multi-element determination of colloidal size distributions in a natural water sample.Anal. Chim. Acta535109doi:10.1016/J.ACA.2004.11.067

[48]  von der Kammer F.Baborowski M.Tadjiki S.Von Tumpling W.2004Colloidal particles in sediment pore waters: particle size distributions and associated element size distribution in anoxic and re-oxidized samples, obtained by FFF-ICP-MS coupling.Acta Hydrochim. Hydrobiol.31400doi:10.1002/AHEH.200300500

[49]  Chittleborough D. J., Tadjiki S., Ranville J. F., Shanks F., Beckett R., Soil colloid analysis by Flow Field-Flow Fractionation, in SuperSoil 2004: 3rd Annual Australian New Zealand Soils Conference, Sydney, 5–9 December 2004 (The Regional Institute Ltd: Gosford). Available at www.regional.org.au/au/asssi/ [Verified 6 January 2010]

[50]  Siripinyanond A., Barnes R. M., Amarasiriwardena D., Flow field-flow fractionation-inductively coupled plasma mass spectrometry for sediment bound trace metal characterization, in Winter Conference on Plasma Spectrochemistry, Scottsdate, AZ, 6–12 January 2002 pp. 1055–1065 (Royal Society Chemistry: Cambridge, UK).

[51]  Amarasiriwardena D.Siripinyanond A.Barnes R. M.2001Trace elemental distribution in soil and compost-derived humic acid molecular fractions and colloidal organic matter in municipal wastewater by flow field-flow fractionation-inductively coupled plasma mass spectrometry (flow FFF-ICP-MS).J. Anal. At. Spectrom.16978doi:10.1039/B102625A

[52]  Hassellöv M.Lyven B.Haraldsson C.Sirinawin W.1999Determination of continuous size and trace element distribution of colloidal material in natural water by on-line coupling of flow field-flow fractionation with ICPMS.Anal. Chem.713497doi:10.1021/AC981455Y

[53]  Baalousha M.von der Kammer F.Motelica-Heino M.Baborowski M.Hofmeister C.Le Coustumer P.2006Size-based speciation of natural colloidal particles by flow field flow fractionation, inductively coupled plasma-mass spectroscopy, and transmission electron microscopy/X-ray energy dispersive spectroscopy: colloids–trace element interaction.Environ. Sci. Technol.402156doi:10.1021/ES051498D

[54]  Baalousha M.von der Kammer F.Motelica-Heino M.Le Coustumer P.2005Natural sample fractionation by FlFFF-MALLS-TEM: sample stabilization, preparation, pre-concentration and fractionation.J. Chromatogr. A1093156doi:10.1016/J.CHROMA.2005.07.103

[55]  Baalousha M.von der Kammer F.Motelica-Heino M.Le Coustumer P.20053D characterization of natural colloids by FIFFF-MALLS-TEM.Anal. Bioanal. Chem.383549doi:10.1007/S00216-005-0006-9

[56]  von der Kammer F., Characterization of environmental colloids applying field flow fractionation–multi detection analysis with emphasis on light scattering techniques 2004, Ph.D. Dissertation, Technical Univerisity of Hamburg, Hamburg.

[57]  Beckett R.Jiang Y.Liu G.Moon M. H.Giddings J. C.1994Separation and behaviour of nonspherical particles in sedimentation/steric field flow fractionation.Particul. Sci. Technol.1289doi:10.1080/02726359408906643

[58]  Ranville J. F.Chittleborough D. J.Beckett R.2005Particle-size and element distributions of soil colloids: implications for colloid transport.Soil Sci. Soc. Am. J.691173

Full Text PDF (720 KB) Export Citation