Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches

Bacteria–nanoparticle interactions and their environmental implications

Deborah M. Aruguete A B and Michael F. Hochella Jr. A

A Center for NanoBioEarth, Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA.

B Corresponding author. Email: aruguete@vt.edu

Environmental Chemistry 7(1) 3-9 http://dx.doi.org/10.1071/EN09115
Submitted: 4 September 2009  Accepted: 22 December 2009   Published: 22 February 2010

Environmental context. The advent of nanotechnology means that the release of nanomaterials into the environment is very likely, if not inevitable, and knowing the environmental impact of such nanomaterials is important. A key aspect of understanding this impact is to learn how nanomaterials affect microorganisms, a critical part of the environment; this topic is addressed in this review, which specifically concerns nanoparticle–bacteria interactions. Current studies show that nanoparticles have the potential to impact bacterial viability, although a great deal remains to be understood concerning nanoparticle–bacteria interactions.

Abstract. Part of the responsible use of nanotechnology will be to better delineate the potential impact of nanomaterials released into the environment. A key aspect of understanding this impact is to examine the interaction between nanomaterials and microorganisms, which are not only highly abundant in nature but critical for global environmental processes. In this Highlight, current knowledge about the interaction between bacteria and industrially-relevant nanoparticles is reviewed. Important areas for further study are discussed.

Additional keyword: microbial toxicology.


[1]  Nealson K. H., Ghiorse W. A., Geobiology: Exploring the Interface between the Biosphere and the Geosphere 2001 (American Academy of Microbiology: Washington, DC).

[2]  Whitman W. B.Coleman D. C.Wiebe W. J.1998Prokaryotes: the unseen majority.Proc. Natl. Acad. Sci. USA956578doi:10.1073/PNAS.95.12.6578

[3]  Falkowski P. G.Fenchel T.Delong E. F.2008The microbial engines that drive Earth’s biogeochemical cycles.Science3201034doi:10.1126/SCIENCE.1153213

[4]  Aruguete D. M.Guest J. S.Yu W. W.Love N. G.Hochella M. F.Jr2010Interaction of CdSe/CdS core-shell quantum dots and Pseudomonas aeruginosa.Environ. Chem.728doi:10.1071/EN09106

[5]  Klasen H. J.2000Historical review of the use of silver in the treatment of burns. I. Early uses.Burns26117doi:10.1016/S0305-4179(99)00108-4

[6]  Shrivastava S.Bera T.Roy A.Singh G.Ramachandrarao P.Dash D.2007Characterization of enhanced antibacterial effects of novel silver nanoparticles.Nanotechnology18225103doi:10.1088/0957-4484/18/22/225103

[7]  Lok C. N.Ho C. M.Chen R.He Q. Y.Yu W. Y.Sun H. Z.Tam P. K. H.Chiu J. F.Che C. M.2006Proteomic analysis of the mode of antibacterial action of silver nanoparticles.J. Proteome Res.5916doi:10.1021/PR0504079

[8]  Sondi I.Salopek-Sondi B.2004Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria.J. Coll. Interf. Sci.275177doi:10.1016/J.JCIS.2004.02.012

[9]  Cho K.-H.Park J.-E.Osaka T.Park S.-G.2005The study of antimicrobial activity and preservative effects of nanosilver ingredient.Electrochim. Acta51956doi:10.1016/J.ELECTACTA.2005.04.071

[10]  Gogoi S. K.Gopinath P.Paul A.Ramesh A.Ghosh S. S.Chattopadhyay A.2006Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles.Langmuir229322doi:10.1021/LA060661V

[11]  Choi O. Y.Deng K. K.Kim N. J.Ross L.Surampalli R. Y.Hu Z. Q.2008The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth.Water Res.423066doi:10.1016/J.WATRES.2008.02.021

[12]  Hwang E. T.Lee J. H.Chae Y. J.Kim Y. S.Kim B. C.Sang B. I.Gu M. B.2008Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria.Small4746doi:10.1002/SMLL.200700954

[13]  Smetana A. B.Klabunde K. J.Marchin G. R.Sorensen C. M.2008Biocidal activity of nanocrystalline silver powders and particles.Langmuir247457doi:10.1021/LA800091Y

[14]  Fabrega J.Fawcett S. R.Renshaw J. C.Lead J. R.2009Silver nanoparticle impact upon bacterial growth: effect of pH, concentration, and organic matter.Environ. Sci. Technol.437285doi:10.1021/ES803259G

[15]  Choi O. Y.Hu Z. Q.2008Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria.Environ. Sci. Technol.424583doi:10.1021/ES703238H

[16]  (a) Hudhomme P., Cousseau J., Plastic solar cells using fullerene derivatives in the photoactive layer, in Fullerenes: Principles and Applications (Eds F. Lang, J. F. Nierengarten) 2007, pp. 221–265 (The Royal Society of Chemistry: Cambridge, UK).
      (b) Bianco A., Da Ros T., Biological applications of fullerenes, in Fullerenes: Principles and Applications (Eds F. Lang, J. F. Nierengarten) 2007, pp. 301–328 (The Royal Society of Chemistry: Cambridge, UK).

[17]  Endo M., Strano M. S., Ajayan P. M., in Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications (Eds A. Jorio, M. S. Dresselhaus, G. Dresselhaus) 2008, pp. 13–62 (Springer-Verlag: Berlin).

[18]  Beigbeder A.Degee P.Conlan S. L.Mutton R. J.Clare A. S.Pettitt M. E.Callow M. E.Callow J. A.Dubois P.2008Preparation and characterization of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings.Biofouling24291doi:10.1080/08927010802162885

[19]  Lyon D. Y.Fortner J. D.Sayes C. M.Colvin V. L.Hughes J. B.2005Bacterial cell association and antimicrobial activity of a C60 water suspension.Environ. Toxicol. Chem.242757doi:10.1897/04-649R.1

[20]  Tang Y. J.Ashcroft J. M.Chen D.Min G. W.Kim C. H.Murkhejee B.Larabell C.Keasling J. D.Chen F. F.2007Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism.Nano Lett.7754doi:10.1021/NL063020T

[21]  Fortner J. D.Lyon D. Y.Sayes C. M.Boyd A. M.Falkner J. C.Hotze E. M.Alemany L. B.Tao Y. J.et al.2005C60 in water: nanocrystal formation and microbial response.Environ. Sci. Technol.394307doi:10.1021/ES048099N

[22]  Lyon D. Y.Adams L. K.Falkner J. C.Alvarez P. J. J.2006Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size.Environ. Sci. Technol.404360doi:10.1021/ES0603655

[23]  Kang S. T.Mauter M. S.Elimelech M.2009Microbial toxicity of carbon-based nanomaterials: implications for river water and wastewater effluent.Environ. Sci. Technol.432648doi:10.1021/ES8031506

[24]  Nyberg L.Turco R. F.Nies L.2008Assessing the impact of nanomaterials on anaerobic microbial communities.Environ. Sci. Technol.421938doi:10.1021/ES072018G

[25]  Lyon D. Y.Brunet L.Hinkal G. W.Wiesner M. R.Alvarez P. J. J.2008Antibacterial activity of fullerene water suspensions (C60) is not due to ROS-mediated damage.Nano Lett.81539doi:10.1021/NL0726398

[26]  Kang S. T.Pinault M.Pfefferle L. D.Elimelech M.2007Single-walled carbon nanotubes exhibit strong antimicrobial activity.Langmuir238670doi:10.1021/LA701067R

[27]  Lyon D. Y.Brown D. A.Alvarez P. J. J.2008Implications and potential applications of bactericidal fullerene water suspensions: effect of nC60 concentration, exposure conditions and shelf life.Water Sci. Technol.571533doi:10.2166/WST.2008.282

[28]  Oberdorster E.2004Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass.Environ. Health Perspect.1121058

[29]  Kamat J. P.Devasagayam T. P. A.Priyadarsini K. I.Mohan H.2000Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications.Toxicology15555

[30]  Tejral G.Panyala N. R.Havel J.2009Carbon nanotubes: toxicological impact on human health and environment.J. Appl. Biomed.71

[31]  Kovochich M.Espinasse B.Auffan M.Hotze E. M.Wessel L.Xia T.Nel A. E.Wiesner M. R.2009Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition.Environ. Sci. Technol.436378

[32]  Hull M. S.Kennedy A. J.Steevens J. A.Bednar A. J.Weiss C. A.Vikesland P. J.2009Release of metal impurities from carbon nanomaterials influences aquatic toxicity.Environ. Sci. Technol.434169doi:10.1021/ES802483P

[33]  Li D.Lyon D. Y.Li Q. L.Alvarez P. J. J.2008Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension.Environ. Toxicol. Chem.271888doi:10.1897/07-548.1

[34]  Johansen A.Pedersen A. L.Jensen K. A.Karlson U.Hansen B. M.Scott-Fordsmand J. J.Winding A.2008Effects of C60 fullerene nanoparticles on soil bacteria and protozoans.Environ. Toxicol. Chem.271895doi:10.1897/07-375.1

[35]  Verran J.Sandoval G.Allen N. S.Edge M.Stratton J.2007Variables affecting the antibacterial properties of nano and pigmentary titania particles in suspension.Dyes Pigments73298doi:10.1016/J.DYEPIG.2006.01.003

[36]  Adams L. K.Lyon D. Y.Alvarez P. J. J.2006Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions.Water Res.403527doi:10.1016/J.WATRES.2006.08.004

[37]  Brunet L.Lyon D. Y.Hotze E. M.Alvarez P. J. J.Wiesner M. R.2009Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.Environ. Sci. Technol.434355doi:10.1021/ES803093T

[38]  Fu G. F.Vary P. S.Lin C. T.2005Anatase TiO2 nanocomposites for antimicrobial coatings.J. Phys. Chem. B1098889doi:10.1021/JP0502196

[39]  Jang H. D.Kim S. K.Kim S. J.2001Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties.J. Nanopart. Res.3141doi:10.1023/A:1017948330363

[40]  Li Q.Xie R. C.Li Y. W.Mintz E. A.Shang J. K.2007Enhanced visible-light-induced photocatalytic disinfection of E. coli by carbon-sensitized nitrogen-doped titanium dioxide.Environ. Sci. Technol.415050doi:10.1021/ES062753C

[41]  Rawat J.Rana S.Sorensson M. S.Misra R. D. K.2007Anti-microbial activity of doped anatase titania coated nickel ferrite compolsite nanoparticles.Mater. Sci. Technol.2397doi:10.1179/174328407X158488

[42]  Applerot G.Lipovsky A.Dror R.Perkas N.Nitzan Y.Lubart R.Gedanken A.2009Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury.Adv. Funct. Mater.19842doi:10.1002/ADFM.200801081

[43]  Franklin N. M.Rogers N. J.Apte S. C.Batley G. E.Gadd G. E.Casey P. S.2007Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility.Environ. Sci. Technol.418484doi:10.1021/ES071445R

[44]  Heinlaan M.Ivask A.Blinova I.Dubourguier H. C.Kahru A.2008Toxicity of nanosized and bulk ZnO, CuO, and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyrus.Chemosphere711308doi:10.1016/J.CHEMOSPHERE.2007.11.047

[45]  He Y. T.Wan J. M.Tokunaga T.2008Kinetic stability of hematite nanoparticles: the effect of particle sizes.J. Nanopart. Res.10321doi:10.1007/S11051-007-9255-1

[46]  Dunphy Guzman K. A.Finnegan M. P.Banfield J. F.2006Influence of surface potential on aggregation and transport of titania nanoparticles.Environ. Sci. Technol.407688doi:10.1021/ES060847G

[47]  Thurston T. R.Wilcoxon J. P.1999Photooxidation of organic chemicals by nanoscale MoS2.J. Phys. Chem. B10311doi:10.1021/JP982337H

[48]  Bose S.Hochella M. F.JrGorby Y. A.Kennedy D. W.McCready D. E.Madden A. S.Lower B. H.2009Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1.Geochim. Cosmochim. Acta73962doi:10.1016/J.GCA.2008.11.031

[49]  Jones N.Ray B.Ranjit K. T.Manna A. C.2008Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms.FEMS Microbiol. Lett.27971doi:10.1111/J.1574-6968.2007.01012.X

[50]  Yamamoto O.2001Influence of particle size on the antibacterial activity of zinc oxide.Int. J. Inorg. Mater.3643doi:10.1016/S1466-6049(01)00197-0

[51]  Zhang L. L.Jiang Y. H.Ding Y. L.Povey M.York D.2007Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids).J. Nanopart. Res.9479doi:10.1007/S11051-006-9150-1

[52]  Zhang Y. W.Peng H. S.Huang W.Zhou Y. F.Yan D. Y.2008Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles.J. Coll. Interf. Sci.325371doi:10.1016/J.JCIS.2008.05.063

[53]  Panáček A.Kvítek L.Prucek R.Kolář M.Večeřová R.Pizúrová N.Sharma V. K.Nevěčná T.Zbořil R.2006Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity.J. Phys. Chem. B11016248doi:10.1021/JP063826H

[54]  Kloepfer J. A.Mielke R. E.Nadeau J. L.2005Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms.Appl. Environ. Microbiol.712548doi:10.1128/AEM.71.5.2548-2557.2005

[55]  Liu J.Aruguete D. M.Jinschek J. R.Rimstidt J. D.Hochella M. F.Jr2008The non-oxidative dissolution of galena nanocrystals: insights into mineral dissolution rates as a function of grain size, shape, and aggregation state.Geochim. Cosmochim. Acta725984doi:10.1016/J.GCA.2008.10.010

[56]  Narayanan R.El-Sayed M. A.2005Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability.J. Phys. Chem. B10912663doi:10.1021/JP051066P

[57]  Huang F.Gilbert B.Zhang H. H.Banfield J. F.2004Reversible, surface-controlled structure transformation in nanoparticles induced by an aggregation state.Phys. Rev. Lett.92155501doi:10.1103/PHYSREVLETT.92.155501

[58]  Liu J.Aruguete D. M.Murayama M.Hochella M. F.Jr2009Influence of size and aggregation on the reactivey of an environmentally and industrially relevant nanomaterial (PbS).Environ. Sci. Technol.438178doi:10.1021/ES902121R

[59]  Jin T.Sun D.Su J. Y.Zhang H.Sue H. J.2009Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7.J. Food Sci.74M46doi:10.1111/J.1750-3841.2008.01013.X

[60]  Velzeboer I.Hendriks A. J.Ragas A. M. J.Van de Meent D.2008Aquatic ecotoxicity tests of some nanomaterials.Environ. Toxicol. Chem.271942doi:10.1897/07-509.1

[61]  Kerisit S.Liu C. X.2009Molecular simulations of water and ion diffusion in nanosized mineral fractures.Environ. Sci. Technol.43777doi:10.1021/ES8016045

[62]  Oberdörster G.Stone V.Donaldson K.2007Toxicology of nanoparticles: a historical perspective.Nanotoxicology12doi:10.1080/17435390701314761

[63]  Kostarelos K.Lacerda L.Pastorin G.Wu W.Wieckowski S.Luangsilvilay J.Godefroy S.Patarotto D.et al.2007Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type.Nat. Nanotechnol.2108doi:10.1038/NNANO.2006.209

[64]  Pal S.Tak Y. K.Song J. M.2007Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli.Appl. Environ. Microbiol.731712doi:10.1128/AEM.02218-06

[65]  Ajayan P. M.Marks L. D.1988Quasimelting and phases of small particles.Phys. Rev. Lett.60585doi:10.1103/PHYSREVLETT.60.585

[66]  Hatchett D. W.Henry S.1996Electrochemistry of sulfur adlayers on the low-index faces of silver.J. Phys. Chem.1009854doi:10.1021/JP953757Z

[67]  Kvitek L.Panacek A.Soukupova J.Kolar M.Vecerova R.Prucek R.Holecova M.Zboril R.2008Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs).J. Phys. Chem. C1125825doi:10.1021/JP711616V

[68]  Goodman C. M.McCusker C. D.Yilmaz T.Rotello V. M.2004Toxicity of gold nanoparticles functionalized with cationic and anionic side chains.Bioconjug. Chem.15897doi:10.1021/BC049951I

[69]  White D., The Physiology and Biochemistry of Prokaryotes, 3rd edn 2009, pp. 21–35 (Oxford University Press: New York).

[70]  Yoon K. Y.Byeon J. H.Park J. H.Hwang J. H.2007Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles.Sci. Total Environ.373572doi:10.1016/J.SCITOTENV.2006.11.007

[71]  Ruparelia J. P.Chatterjee A. K.Duttagupta S. P.Mukherji S.2008Strain specificity in antimicrobial activity of silver and copper nanoparticles.Acta Biomater.4707doi:10.1016/J.ACTBIO.2007.11.006

[72]  Stoimenov P. K.Klinger R. L.Marchin G. R.Klabunde K. J.2002Metal oxide nanoparticles as bactericidal agents.Langmuir186679doi:10.1021/LA0202374

[73]  Beveridge T. J.Makin S. A.Kadurugamuwa J. L.Li Z. S.1997Interactions between biofilms and the environment.FEMS Microbiol. Rev.20291doi:10.1111/J.1574-6976.1997.TB00315.X

[74]  Davey M. E.O’Toole G. A.2000Microbial biofilms: from ecology to molecular genetics.Microbiol. Mol. Biol. Rev.64847doi:10.1128/MMBR.64.4.847-867.2000

[75]  Watnick P.Kolter R.2000Biofilm, city of microbes.J. Bacteriol.1822675doi:10.1128/JB.182.10.2675-2679.2000

[76]  Moreau J. W.Weber P. K.Martin M. C.Gilbert B.Hutcheon I. D.Banfield J. F.2007Extracellular proteins limit the dispersal of biogenic nanoparticles.Science3161600doi:10.1126/SCIENCE.1141064

[77]  Brant J.Lecoanet H.Wiesner M. R.2005Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems.J. Nanopart. Res.7545doi:10.1007/S11051-005-4884-8

[78]  Vikesland P. J.Heathcock A. M.Rebodos R. L.Makus K. E.2007Particle size and aggregation effects on magnetite reactivity towards carbon tetrachloride.Environ. Sci. Technol.415277doi:10.1021/ES062082I

[79]  Huang Z. B.Zheng X.Yan D. H.Yin G. F.Liao X. M.Kang Y. Q.Yao Y. D.Huang D.Hao B. Q.2008Toxicological effect of ZnO nanoparticles based on bacteria.Langmuir244140doi:10.1021/LA7035949

[80]  Kloepfer J. A.Mielke R. E.Wong M. S.Nealson K. H.Stucky G.Nadeau J. L.2003Quantum dots as strain- and metabolism-specific microbiological labels.Appl. Environ. Microbiol.694205doi:10.1128/AEM.69.7.4205-4213.2003

[81]  Kawai F.2002Microbial degradation of polyethers.Appl. Microbiol. Biotechnol.5830doi:10.1007/S00253-001-0850-2

[82]  Choi K. K.Park C. W.Kim S. Y.Lyoo W. S.Lee S. H.Lee J. W.2004Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in dyeing wastewater.J. Microbiol. Biotechnol.141009

Export Citation Cited By (27)