Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches

Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C60 nanoparticles and carbon nanotubes

Kai Loon Chen A D , Billy A. Smith B , William P. Ball A and D. Howard Fairbrother B C

A Department of Geography and Environmental Engineering, Johns Hopkins University, Baltimore, MD 21218-2686, USA.

B Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218-2686, USA.

C Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218-2686, USA.

D Corresponding author. Email: kailoon.chen@jhu.edu

Kai Loon Chen is an Assistant Professor in the Department of Geography and Environmental Engineering at Johns Hopkins University in Baltimore, Maryland. He completed his B.Eng. and M.Eng. degrees in civil engineering at the National University of Singapore in 2001 and 2003 respectively. He joined the Environmental Engineering Program at Yale University in 2003 and received his Ph.D. in 2008. His current research focusses on understanding the fate and transport of engineered nanoparticles in natural and engineered aquatic systems. He is also interested in utilising nanotechnology for water purification and environmental remediation.

Billy A. Smith is a graduate research assistant pursuing his doctorate in Chemistry in the research group of Professor Howard Fairbrother, Johns Hopkins University (JHU), Baltimore, Maryland. He earned his B.S. in chemistry from Stevenson University (previously known as Villa Julie College) in 2005, and currently holds a masters degree in Chemistry from JHU. In the Fairbrother group, he has used surface analytical techniques in conjunction with time-resolved dynamic light scattering to study the role that oxygen containing functional groups play in determining the colloidal stability and transport properties of oxidised carbon nanotubes.

William P. Ball (P.E., Ph.D., BCEE) is a Professor of environmental engineering in the Department of Geography and Environmental Engineering at Johns Hopkins University. He received his B.S. from the University of Virginia in 1976 and his M.S. and Ph.D. in environmental engineering from Stanford University in 1977 and 1989. Between his M.S. and Ph.D., Professor Ball worked for six years for James M. Montgomery Consulting Engineers. He was previously on the faculty at Duke University and in 1992 joined the faculty at Johns Hopkins University. Professor Ball’s research program is focussed on physical and chemical processes affecting pollutant fate and treatment in natural environments and engineered systems, with focus on complex aquatic systems.

D. Howard Fairbrother is a Professor of Chemistry at Johns Hopkins University in Baltimore, Maryland. He received his B.S. degree from Oxford University, England, in 1989, and his Ph.D. in chemistry from Northwestern University in 1994. After completing a postdoctoral position with Professor Gabor Somorjai at the University of California, Berkeley, he joined the faculty in the Chemistry Department at Johns Hopkins University (JHU) in 1997. His research program at JHU is focussed on surface chemistry, with particular emphasis on characterising the functional groups on environmentally relevant materials and understanding the role of surface chemistry on the behaviour of engineered nanomaterials in aquatic environments.

Environmental Chemistry 7(1) 10-27 http://dx.doi.org/10.1071/EN09112
Submitted: 1 September 2009  Accepted: 11 January 2010   Published: 22 February 2010

Environmental context. The fate and bioavailability of engineered nanoparticles in natural aquatic systems are strongly influenced by their ability to remain dispersed in water. Consequently, understanding the colloidal properties of engineered nanoparticles through rigorous characterisation of physicochemical properties and measurements of particle stability will allow for a more accurate prediction of their environmental, health, and safety effects in aquatic systems. This review highlights some important techniques suitable for the assessment of the colloidal properties of engineered nanoparticles and discusses some recent findings obtained by using these techniques on two popular carbon-based nanoparticles, fullerene C60 and multi-walled carbon nanotubes.

Abstract. The colloidal properties of engineered nanoparticles directly affect their use in a wide variety of applications and also control their environmental fate and mobility. The colloidal stability of engineered nanoparticles depends on their physicochemical properties within the given aqueous medium and is ultimately reflected in the particles’ aggregation and deposition behaviour. This review presents some of the key experimental methods that are currently used to probe colloidal properties and quantify engineered nanoparticle stability in water. Case studies from fullerene C60 nanoparticles and multi-walled carbon nanotubes illustrate how the characterisation and measurement methods are used to understand and predict nanoparticle fate in aquatic systems. Consideration of the comparisons between these two classes of carbon-based nanoparticles provides useful insights into some major current knowledge gaps while also revealing clues about needed future developments. Key issues to be resolved relate to the nature of near-range surface forces and the origins of surface charge, particularly for the reportedly unmodified or ‘pure’ carbon-based nanoparticles.

Additional keywords: aggregation, deposition, DLVO, dynamic light scattering, X-ray photoelectron spectroscopy.


[1]  Qin L. C.Zhao X. L.Hirahara K.Miyamoto Y.Ando Y.Iijima S.2000Materials science – the smallest carbon nanotube.Nature40850doi:10.1038/35040699

[2]  Society T. R., Nanoscience and Nanotechnologies: Opportunities and Uncertainties 2005 (The Royal Society: London).

[3]  Brown K. R.Walter D. G.Natan M. J.2000Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape.Chem. Mater.12306doi:10.1021/CM980065P

[4]  Iijima S.1991Helical microtubules of graphitic carbon.Nature35456doi:10.1038/354056A0

[5]  Shen J.Hu Y.Shi M.Lu X.Qin C.Li C.Ye M.2009Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets.Chem. Mater.213514doi:10.1021/CM901247T

[6]  Short P.McCoy M.2007Companies invest in nanotubes.Chem. Eng. News8520

[7]  Oliver J., Crull A., Nanoparticle News Review, 2008 2009 (BCC Research). Available at
http://www.bccresearch.com/report/NAN004J.html [Verified 22 January 2010]

[8]  McWilliams A., Nanotechnology: a Realistic Market Assessment 2004 (BCC Research). Available at http://www.bccresearch.com/report/NAN031C.html [Verified 22 January 2010]

[9]  The Project on Emerging Nanotechnologies (Woodrow Wilson International Center for Scholars and the Pew Charitable Trusts). Available at http://www.nanotechproject.org/inventories/consumer/analysis_draft/ [Verified 22 January 2010]

[10]  Theron J.Walker J. A.Cloete T. E.2008Nanotechnology and water treatment: applications and emerging opportunities.Crit. Rev. Microbiol.3443doi:10.1080/10408410701710442

[11]  Otto M.Floyd M.Bajpai S.2008Nanotechnology for site remediation.Remediation1999doi:10.1002/REM.20194

[12]  Varadhi S. N., Gill H., Apoldo L. J., Liao K., Blackman R. A., Wittman W. K., Full-scale nanoiron injection for treatment of groundwater contaminated with chlorinated hydrocarbons, in Natural Gas Technologies 2005 Conference, Orlando, FL 2005 (Pars Environmental Inc.: Orlando, FL).

[13]  Tratnyek P. G.Johnson R. L.2006Nanotechnologies for environmental cleanup.Nano Today144doi:10.1016/S1748-0132(06)70048-2

[14]  Karn B.Kuiken T.Otto M.2009Nanotechnology and in situ remediation: a review of the benefits and potential risks.Environ. Health Perspect.117doi:10.1289/EHP.0900793

[15]  Nowack B., Pollution prevention and treatment using nanotechnology, in Nanotechnology, Volume 2: Environmental Aspects (Ed. H. Krug) 2008 (Wiley-VCH: Weinheim, Germany).

[16]  Freitas R. A.2005What is nanomedicine?Nanomedicine12

[17]  Lacerda L.Bianco A.Prato M.Kostarelos K.2006Carbon nanotubes as nanomedicines: from toxicology to pharmacology.Adv. Drug Deliv. Rev.581460

[18]  Office of Solid Waste and Emergency Response, Selected Sites Using or Testing Nanoparticles for Remediation 2008 (US EPA). Available at http://clu-in.org/download/remed/nano-site-list.pdf [Verified 22 January 2010]

[19]  Mauter M. S.Elimelech M.2008Environmental applications of carbon-based nanomaterials.Environ. Sci. Technol.425843doi:10.1021/ES8006904

[20]  Li L.Xing Y.2007Pt-Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts.J. Phys. Chem. C1112803doi:10.1021/JP0655470

[21]  Xing Y.2004Synthesis and electrochemical characterization of uniformly dispersed high-loading Pt nanoparticles on sonochemically treated carbon nanotubes.J. Phys. Chem. B10819255doi:10.1021/JP046697I

[22]  Köhler A. R.Som C.Helland A.Gottschalk F.2008Studying the potential release of carbon nanotubes throughout the application life cycle.J. Clean. Prod.16927doi:10.1016/J.JCLEPRO.2007.04.007

[23]  Mueller N. C.Nowack B.2008Exposure modeling of engineered nanoparticles in the environment.Environ. Sci. Technol.424447doi:10.1021/ES7029637

[24]  Zhu X.Zhu L.Duan Z.Qi R.Li Y.Lang Y.2008Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage.J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng.43278doi:10.1080/10934520701792779

[25]  Kang S.Mauter M. S.Elimelech M.2009Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent.Environ. Sci. Technol.432648doi:10.1021/ES8031506

[26]  Kang S.Mauter M. S.Elimelech M.2008Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity.Environ. Sci. Technol.427528doi:10.1021/ES8010173

[27]  Panessa-Warren B. J.Maye M. M.Warren J. B.Crosson K. M.2009Single-walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure.Environ. Pollut.1571140doi:10.1016/J.ENVPOL.2008.12.028

[28]  Sager T. M.Porter D. W.Robinson V. A.Lindsley W. G.Schwegler-Berry D. E.Castranova V.2007Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity.Nanotoxicology1118doi:10.1080/17435390701381596

[29]  Elimelech M., Gregory J., Jia X., Williams R. A., Particle Deposition and Aggregation: Measurement, Modelling and Simulation 1995 (Butterworth-Heinemann: Oxford, UK).

[30]  Yu W. L.Borkovec M.2002Distinguishing heteroaggregation from homoaggregation in mixed binary particle suspensions by multiangle static and dynamic light scattering.J. Phys. Chem. B10613106doi:10.1021/JP021792H

[31]  Lin W.Kobayashi M.Skarba M.Nu C. D.Galletto P.Borkovec M.2006Heteroaggregation in binary mixtures of oppositely charged colloidal particles.Langmuir221038doi:10.1021/LA0522808

[32]  Galletto P.Lin W.Borkovec M.2005Measurement of heteroaggregation rate constants by simultaneous static and dynamic light scattering.Phys. Chem. Chem. Phys.71464doi:10.1039/B417761D

[33]  Yu W. L.Matijević E.Borkovec M.2002Absolute heteroaggregation rate constants by multiangle static and dynamic light scattering.Langmuir187853doi:10.1021/LA0203382

[34]  Yao K. M.Habibian M. M.O’Melia C. R.1971Water and waste water filtration – concepts and applications.Environ. Sci. Technol.51105doi:10.1021/ES60058A005

[35]  Israelachvili J., Intermolecular and Surface Forces 1991 (Academic Press: London, UK).

[36]  Smith B.Wepasnick K.Schrote K. E.Bertele A. H.Ball W. P.O’Melia C.Fairbrother D. H.2009Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes.Environ. Sci. Technol.43819doi:10.1021/ES802011E

[37]  Fornasiero D.Grieser F.1991The kinetics of electrolyte-induced aggregation of Carey Lea silver colloids.J. Colloid Interface Sci.141168doi:10.1016/0021-9797(91)90312-V

[38]  Pillai Z. S.Kamat P. V.2004What factors control the size and shape of silver nanoparticles in the citrate ion reduction method?J. Phys. Chem. B108945doi:10.1021/JP037018R

[39]  Rong Y.Chen H. Z.Wu G.Wang M.2005Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization.Mater. Chem. Phys.91370doi:10.1016/J.MATCHEMPHYS.2004.11.042

[40]  Yang K.Xing B. S.2009Sorption of phenanthrene by humic acid-coated nanosized TiO2 and ZnO.Environ. Sci. Technol.431845doi:10.1021/ES802880M

[41]  Limbach L. K.Li Y. C.Grass R. N.Brunner T. J.Hintermann M. A.Muller M.Gunther D.Stark W. J.2005Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations.Environ. Sci. Technol.399370doi:10.1021/ES051043O

[42]  Gupta A. K.Gupta M.2005Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications.Biomaterials263995doi:10.1016/J.BIOMATERIALS.2004.10.012

[43]  Hunter R. J., Foundations of Colloid Science 2002 (Oxford University Press: Oxford, UK).

[44]  Derjaguin B. V.Landau L. D.1941Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes.Acta Physicochim. URSS14733

[45]  Verwey E. J. W., Overbeek J. T. G., Theory of the Stability of Lyophobic Colloids 1948 (Elsevier: Amsterdam).

[46]  Behrens S. H.Borkovec M.2000Influence of the secondary interaction energy minimum on the early stages of colloidal aggregation.J. Colloid Interface Sci.225460

[47]  Elimelech M.O’Melia C. R.1990Effect of particle-size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers.Langmuir61153doi:10.1021/LA00096A023

[48]  Behrens S. H.Borkovec M.Schurtenberger P.1998Aggregation in charge-stabilized colloidal suspensions revisited.Langmuir141951doi:10.1021/LA971237K

[49]  Behrens S. H.Christl D. I.Emmerzael R.Schurtenberger P.Borkovec M.2000Charging and aggregation properties of carboxyl latex particles: experiments versus DLVO theory.Langmuir162566doi:10.1021/LA991154Z

[50]  Napper D. H.1977Steric stabilization.J. Colloid Interface Sci.58390doi:10.1016/0021-9797(77)90150-3

[51]  Dickinson E.Eriksson L.1991Particle flocculation by adsorbing polymers.Adv. Colloid Interface Sci.341doi:10.1016/0001-8686(91)80045-L

[52]  Einarson M. B.Berg J. C.1993Electrosteric stabilization of colloidal latex dispersions.J. Colloid Interface Sci.155165doi:10.1006/JCIS.1993.1022

[53]  Pettersson A.Marino G.Pursiheimo A.Rosenholm J. B.2000Electrosteric stabilization of Al2O3, ZrO2, and 3Y-ZrO2 suspensions: effect of dissociation and type of polyelectrolyte.J. Colloid Interface Sci.22873doi:10.1006/JCIS.2000.6939

[54]  Chen K. L.Mylon S. E.Elimelech M.2006Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes.Environ. Sci. Technol.401516doi:10.1021/ES0518068

[55]  Fritz G.Schadler V.Willenbacher N.Wagner N. J.2002Electrosteric stabilization of colloidal dispersions.Langmuir186381doi:10.1021/LA015734J

[56]  Yildiz I.McCaughan B.Cruickshank S. F.Callan J. F.Raymo F. M.2009Biocompatible CdSe-ZnS core-shell quantum dots coated with hydrophilic polythiols.Langmuir257090doi:10.1021/LA900148M

[57]  Yu W. W.Chang E.Falkner J. C.Zhang J. Y.Al-Somali A. M.Sayes C. M.Johns J.Drezek R.Colvin V. L.2007Forming biocompatible and non-aggregated nanocrystals in water using amphiphilic polymers.J. Am. Chem. Soc.1292871doi:10.1021/JA067184N

[58]  Phenrat T.Saleh N.Sirk K.Kim H. J.Tilton R. D.Lowry G. V.2008Stabilization of aqueous nanoscale zero-valent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation.J. Nanopart. Res.10795doi:10.1007/S11051-007-9315-6

[59]  Tiraferri A.Chen K. L.Sethi R.Elimelech M.2008Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum.J. Colloid Interface Sci.32471doi:10.1016/J.JCIS.2008.04.064

[60]  Kanel S. R.Goswami R. R.Clement T. P.Barnett M. O.Zhao D.2008Two-dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media.Environ. Sci. Technol.42896doi:10.1021/ES071774J

[61]  Huang H. H.Ni X. P.Loy G. L.Chew C. H.Tan K. L.Loh F. C.Deng J. F.Xu G. Q.1996Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone).Langmuir12909doi:10.1021/LA950435D

[62]  Quaroni L.Chumanov G.1999Preparation of polymer-coated functionalized silver nanoparticles.J. Am. Chem. Soc.12110642doi:10.1021/JA992088Q

[63]  Tiller C. L.O’Melia C. R.1993Natural organic-matter and colloidal stability – models and measurements.Colloids Surf. A Physicochem. Eng. Asp.7389doi:10.1016/0927-7757(93)80009-4

[64]  Tipping E.Higgins D. C.1982The effect of adsorbed humic substances on the colloid stability of hematite particles.Colloids Surf.585doi:10.1016/0166-6622(82)80064-4

[65]  Amal R.Raper J. A.Waite T. D.1992Effect of fulvic acid adsorption on the aggregation kinetics and structure of hematite particles.J. Colloid Interface Sci.151244doi:10.1016/0021-9797(92)90255-K

[66]  Heidmann I.Christl I.Kretzschmar R.2005Aggregation kinetics of kaolinite–fulvic acid colloids as affected by the sorption of Cu and Pb.Environ. Sci. Technol.39807doi:10.1021/ES049387M

[67]  Buffle J.Wilkinson K. J.Stoll S.Filella M.Zhang J. W.1998A generalized description of aquatic colloidal interactions: the three-colloidal component approach.Environ. Sci. Technol.322887doi:10.1021/ES980217H

[68]  Williams D. B., Carter C. B., Transmission Electron Microscopy: a Textbook for Materials Science, 1st edn 2004 (Springer: New York).

[69]  Leppard G. G.2008Nanoparticles in the environment as revealed by transmission electron microscopy: detection, characterisation and activities.Current Nanoscience4278doi:10.2174/157341308785161109

[70]  Goldstein J., Newbury D. E., Joy D. C., Lyman C. E., Echlin P., Lifshin E., Sawyer L. C., Michael J. R., Scanning Electron Microscopy and X-ray Microanalysis, 3rd edn 2003 (Springer: New York).

[71]  Sun Y.Xia Y.2002Shape-controlled synthesis of gold and silver nanoparticles.Science2982176doi:10.1126/SCIENCE.1077229

[72]  Lead J. R.Wilkinson K. J.2006Aquatic colloids and nanoparticles: current knowledge and future trends.Environ. Chem.3159doi:10.1071/EN06025

[73]  Rao C. N. R.Biswas K.2009Characterization of nanomaterials by physical methods.Annu. Rev. Anal. Chem.2435

[74]  Yang H.Holloway P. H.2003Enhanced photoluminescence from CdS : Mn/ZnS core/shell quantum dots.Appl. Phys. Lett.821965

[75]  Kim H. W.Shim S. H.2008Branched structures of tin oxide one-dimensional nanomaterials.Vacuum821395doi:10.1016/J.VACUUM.2008.03.074

[76]  Lee H. J.Yeo S. Y.Jeong S. H.2003Antibacterial effect of nanosized silver colloidal solution on textile fabrics.J. Mater. Sci.382199doi:10.1023/A:1023736416361

[77]  Yang R. H.Chang L. W.Wu J. P.Tsai M. H.Wang H. J.Kuo Y. C.Yeh T. K.Yang C. S.Lin P.2007Persistent tissue kinetics and redistribution of nanoparticles, Quantum Dot 705, in mice: ICP-MS quantitative assessment.Environ. Health Perspect.1151339

[78]  Baleizão C.Gigante B.Garcia H.Corma A.2004Vanadyl salen complexes covalently anchored to single-wall carbon nanotubes as heterogeneous catalysts for the cyanosilylation of aldehydes.J. Catal.22177

[79]  Vickerman J. C., Gilmore I. S. (Eds), Surface analysis, in The Principal Techniques, 2nd edn 2009 (Wiley: Chichester, UK).

[80]  Langley L. A.Fairbrother D. H.2007Effect of wet chemical treatments on the distribution of surface oxides on carbonaceous materials.Carbon4547doi:10.1016/J.CARBON.2006.08.008

[81]  Langley L. A.Villanueva D. E.Fairbrother D. H.2006Quantification of surface oxides on carbonaceous materials.Chem. Mater.18169doi:10.1021/CM051462K

[82]  Washton N. M.Brantley S. L.Mueller K. T.2008Probing the molecular-level control of aluminosilicate dissolution: a sensitive solid-state NOM proxy for reactive surface area.Geochim. Cosmochim. Acta725949doi:10.1016/J.GCA.2008.09.018

[83]  Preoanin T.Kallay N.1998Application of ‘mass titration’ to determination of surface charge of metal oxides.Croat. Chem. Acta711117

[84]  Brunauer S.Emmett P. H.Teller E.1938Adsorption of gases in multimolecular layers.J. Am. Chem. Soc.60309

[85]  Li F.Wang Y.Wang D.Wei F.2004Characterization of single-wall carbon nanotubes by N2 adsorption.Carbon422375doi:10.1016/J.CARBON.2004.02.025

[86]  Smith B.Wepasnick K.Schrote K. E.Cho H. H.Ball W. P.Fairbrother D. H.2009Influence of surface oxides on the colloidal stability of multiwalled carbon nanotubes: a structure–property relationship.Langmuir259767doi:10.1021/LA901128K

[87]  Ottewill R. H.Shaw J. N.1972Electrophoretic studies on polystyrene latices.J. Electroanal. Chem.37133doi:10.1016/S0022-0728(72)80221-3

[88]  Sun Y. P.Li X. Q.Zhang W. X.Wang H. P.2007A method for the preparation of stable dispersion of zero-valent iron nanoparticles.Colloids Surf.30860doi:10.1016/J.COLSURFA.2007.05.029

[89]  Usrey M. L.Nair N.Agnew D. E.Pina C. F.Strano M. S.2007Controlling the electrophoretic mobility of single-walled carbon nanotubes: a comparison of theory and experiment.Langmuir237768doi:10.1021/LA063667T

[90]  Butt H. J.Cappella B.Kappl M.2005Force measurements with the atomic force microscope: technique, interpretation and applications.Surf. Sci. Rep.591–61doi:10.1016/J.SURFREP.2005.08.003

[91]  Ducker W. A.Senden T. J.Pashley R. M.1991Direct measurement of colloidal forces using an atomic force microscope.Nature353239doi:10.1038/353239A0

[92]  Ong Q. K.Sokojov I.2007Attachment of nanoparticles to the AFM tips for direct measurements of interaction between a single nanoparticle and surfaces.J. Colloid Interface Sci.310385doi:10.1016/J.JCIS.2007.02.010

[93]  Akita S.Nakayama Y.Mizooka S.Takano Y.Okawa T.Miyatake Y.Yamanaka S.Tsuji M.Nosaka T.2001Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope.Appl. Phys. Lett.791691doi:10.1063/1.1403275

[94]  Dai H. J.Hafner J. H.Rinzler A. G.Colbert D. T.Smalley R. E.1996Nanotubes as nanoprobes in scanning probe microscopy.Nature384147doi:10.1038/384147A0

[95]  Chen K. L.Mylon S. E.Elimelech M.2007Enhanced aggregation of alginate-coated iron oxide (hematite) nanoparticles in the presence of calcium, strontium, and barium cations.Langmuir235920doi:10.1021/LA063744K

[96]  Rarity J.1989Flocculation – colloids stick to fractal rules.Nature339340doi:10.1038/339340A0

[97]  Lin M. Y.Lindsay H. M.Weitz D. A.Ball R. C.Klein R.Meakin P.1989Universality in colloid aggregation.Nature339360doi:10.1038/339360A0

[98]  Weitz D. A.Huang J. S.Lin M. Y.Sung J.1985Limits of the fractal dimension for irreversible kinetic aggregation of gold colloids.Phys. Rev. Lett.541416doi:10.1103/PHYSREVLETT.54.1416

[99]  Zhou Z. K.Wu P. Q.Chu B. J.1991Cationic surfactant-induced fractal silica aggregates – a light-scattering study.J. Colloid Interface Sci.146541doi:10.1016/0021-9797(91)90218-W

[100]  Amal R.Raper J. A.Waite T. D.1990Fractal structure of hematite aggregates.J. Colloid Interface Sci.140158doi:10.1016/0021-9797(90)90331-H

[101]  Zhang J. W.Buffle J.1996Multi-method determination of the fractal dimension of hematite aggregates.Colloid. Surface A107175doi:10.1016/0927-7757(95)03344-0

[102]  Zhou Z. K.Chu B. J.1991Light-scattering study on the fractal aggregates of polystyrene spheres – kinetic and structural approaches.J. Colloid Interface Sci.143356doi:10.1016/0021-9797(91)90269-E

[103]  Chen Q.Saltiel C.Manickavasagam S.Schadler L. S.Siegel R. W.Yang H. C.2004Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension.J. Colloid Interface Sci.28091doi:10.1016/J.JCIS.2004.07.028

[104]  Kim A. Y.Berg J. C.2000Fractal heteroaggregation of oppositely charged colloids.J. Colloid Interface Sci.229607doi:10.1006/JCIS.2000.7028

[105]  López-López J. M.Schmitt A.Moncho-Jordá A.Hidalgo-Álvarez R.2006Stability of binary colloids: kinetic and structural aspects of heteroaggregation processes.Soft Matter21025doi:10.1039/B608349H

[106]  Chappell M. A.George A. J.Dontsova K. M.Porter B. E.Price C. L.Zhou P.Morikawa E.Kennedy A. J.Steevens J. A.2009Surfactive stabilization of multiwalled carbon nanotube dispersions with dissolved humic substances.Environ. Pollut.1571081doi:10.1016/J.ENVPOL.2008.09.039

[107]  Phenrat T.Saleh N.Sirk K.Tilton R. D.Lowry G. V.2007Aggregation and sedimentation of aqueous nanoscale zero-valent iron dispersions.Environ. Sci. Technol.41284doi:10.1021/ES061349A

[108]  Teot A. S.Daniels S. L.1969Flocculation of negatively charged colloids by inorganic cations and anionic polyelectrolytes.Environ. Sci. Technol.3825doi:10.1021/ES60032A003

[109]  Giordano A. N.Chaturvedi H.Poler J. C.2007Critical coagulation concentrations for carbon nanotubes in non-aqueous solvent.J. Phys. Chem. C11111583doi:10.1021/JP0729866

[110]  Sano M.Okamura J.Shinkai S.2001Colloidal nature of single-walled carbon nanotubes in electrolyte solution: the Schulze–Hardy Rule.Langmuir177172doi:10.1021/LA010698+

[111]  Tezak B.Matijević E.Schulz K.1951Coagulation of hydrophobic sols in statu nascendi. I. Determination of coagulation values.J. Phys. Chem.551557doi:10.1021/J150492A016

[112]  Holthoff H.Egelhaaf S. U.Borkovec M.Schurtenberger P.Sticher H.1996Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering.Langmuir125541doi:10.1021/LA960326E

[113]  Chen K. L.Elimelech M.2006Aggregation and deposition kinetics of fullerene (C60) nanoparticles.Langmuir2210994doi:10.1021/LA062072V

[114]  He Y. T.Wan J.Tokunaga T.2008Kinetic stability of hematite nanoparticles: the effect of particle sizes.J. Nanopart. Res.10321doi:10.1007/S11051-007-9255-1

[115]  Sauerbrey G.1959Verwendung von Schwingquarzen zur Wagung Dunner Schichten und zur Mikrowagung.Z. Phys.155206doi:10.1007/BF01337937

[116]  Bradford S. A.Yates S. R.Bettahar M.Simunek J.2002Physical factors affecting the transport and fate of colloids in saturated porous media.Water Resour. Res.381327doi:10.1029/2002WR001340

[117]  Bradford S. A.Simunek J.Bettahar M.Van Genuchten M. T.Yates S. R.2003Modeling colloid attachment, straining, and exclusion in saturated porous media.Environ. Sci. Technol.372242doi:10.1021/ES025899U

[118]  Chen K. L.Elimelech M.2008Interaction of fullerene (C60) nanoparticles with humic acid and alginate-coated silica surfaces: measurements, mechanisms, and environmental implications.Environ. Sci. Technol.427607doi:10.1021/ES8012062

[119]  Fatisson J.Domingos R. F.Wilkinson K. J.Tufenkji N.2009Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring.Langmuir256062doi:10.1021/LA804091H

[120]  Quevedo I. R.Tufenkji N.2009Influence of solution chemistry on the deposition and detachment kinetics of a CdTe quantum dot examined using a quartz crystal microbalance.Environ. Sci. Technol.433176doi:10.1021/ES803388U

[121]  Yuan B. L.Pham M.Nguyen T. H.2008Deposition kinetics of bacteriophage MS2 on a silica surface coated with natural organic matter in a radial stagnation point flow cell.Environ. Sci. Technol.427628doi:10.1021/ES801003S

[122]  Sirk K. M.Saleh N. B.Phenrat T.Kim H. J.Dufour B.Ok J.Golas P. L.Matyjaszewski K.Lowry G. V.Tilton R. D.2009Effect of adsorbed polyelectrolytes on nanoscale zero-valent iron particle attachment to soil surface models.Environ. Sci. Technol.433803doi:10.1021/ES803589T

[123]  Saleh N.Sirk K.Liu Y. Q.Phenrat T.Dufour B.Matyjaszewski K.Tilton R. D.Lowry G. V.2007Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media.Environ. Eng. Sci.2445doi:10.1089/EES.2007.24.45

[124]  Kroto H. W.Heath J. R.Obrien S. C.Curl R. F.Smalley R. E.1985C60: buckminsterfullerene.Nature318162doi:10.1038/318162A0

[125]  Jensen A. W.Wilson S. R.Schuster D. I.1996Biological applications of fullerenes.Bioorg. Med. Chem.4767doi:10.1016/0968-0896(96)00081-8

[126]  Ying Q. C.Zhang J.Liang D. H.Nakanishi W.Isobe H.Nakamura E.Chu B.2005Fractal behavior of functionalized fullerene aggregates. I. Aggregation of two-handed tetraaminofullerene with DNA.Langmuir219824doi:10.1021/LA050557Y

[127]  Alargova R. G.Deguchi S.Tsujii K.2001Stable colloidal dispersions of fullerenes in polar organic solvents.J. Am. Chem. Soc.12310460doi:10.1021/JA010202A

[128]  Sayes C. M.Fortner J. D.Guo W.Lyon D.Boyd A. M.Ausman K. D.Tao Y. J.Sitharaman B.et al.2004The differential cytotoxicity of water-soluble fullerenes.Nano Lett.41881doi:10.1021/NL0489586

[129]  Fortner J. D.Lyon D. Y.Sayes C. M.Boyd A. M.Falkner J. C.Hotze E. M.Alemany L. B.Tao Y. J.et al.2005C60 in water: nanocrystal formation and microbial response.Environ. Sci. Technol.394307doi:10.1021/ES048099N

[130]  Klaine S. J.Alvarez P. J. J.Batley G. E.Fernandes T. F.Handy R. D.Lyon D. Y.Mahendra S.McLaughlin M. J.Lead J. R.2008Nanomaterials in the environment: behavior, fate, bioavailability, and effects.Environ. Toxicol. Chem.271825doi:10.1897/08-090.1

[131]  Handy R. D.von der Kammer F.Lead J. R.Hassellov M.Owen R.Crane M.2008The ecotoxicology and chemistry of manufactured nanoparticles.Ecotoxicology17287doi:10.1007/S10646-008-0199-8

[132]  Scrivens W. A.Tour J. M.Creek K. E.Pirisi L.1994Synthesis of 14C-labeled C60, its suspension in water, and its uptake by human keratinocytes.J. Am. Chem. Soc.1164517doi:10.1021/JA00089A067

[133]  Dhawan A.Taurozzi J. S.Pandey A. K.Shan W. Q.Miller S. M.Hashsham S. A.Tarabara V. V.2006Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity.Environ. Sci. Technol.407394doi:10.1021/ES0609708

[134]  Cheng X. K.Kan A. T.Tomson M. B.2004Naphthalene adsorption and desorption from aqueous C60 fullerene.J. Chem. Eng. Data49675doi:10.1021/JE030247M

[135]  Bouchard D.Ma X.Isaacson C.2009Colloidal properties of aqueous fullerenes: isoelectric points and aggregation kinetics of C60 and C60 derivatives.Environ. Sci. Technol.436597doi:10.1021/ES901354R

[136]  Chen K. L.Elimelech M.2009Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties.Environ. Sci. Technol.437270doi:10.1021/ES900185P

[137]  Duncan L. K.Jinschek J. R.Vikesland P. J.2008C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge.Environ. Sci. Technol.42173doi:10.1021/ES071248S

[138]  Brant J. A.Labille J.Bottero J. Y.Wiesner M. R.2006Characterizing the impact of preparation method on fullerene cluster structure and chemistry.Langmuir223878doi:10.1021/LA053293O

[139]  Jakubczyk D.Derkachov G.Bazhan W.Lusakowska E.Kolwas K.Kolwas M.2004Study of microscopic properties of water fullerene suspensions by means of resonant light scattering analysis.J. Phys. D Appl. Phys.372918doi:10.1088/0022-3727/37/20/021

[140]  Labille J.Masion A.Ziarelli F.Rose J.Brant J.Villieras F.Pelletier M.Borschneck D.Wiesner M. R.Bottero J. Y.2009Hydration and dispersion of C60 in aqueous systems: the nature of water–fullerene interactions.Langmuir2511232doi:10.1021/LA9022807

[141]  Andrievsky G. V.Kosevich M. V.Vovk O. M.Shelkovsky V. S.Vashchenko L. A.1995On the production of an aqueous colloidal solution of fullerenes.J. Chem. Soc. Chem. Commun.121281doi:10.1039/C39950001281

[142]  Mchedlov-Petrossyan N. O.Klochkov V. K.Andrievsky G. V.1997Colloidal dispersions of fullerene C60 in water: some properties and regularities of coagulation by electrolytes.J. Chem. Soc., Faraday Trans.934343doi:10.1039/A705494G

[143]  Deguchi S.Alargova R. G.Tsujii K.2001Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization.Langmuir176013doi:10.1021/LA010651O

[144]  Brant J.Lecoanet H.Hotze M.Wiesner M.2005Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures.Environ. Sci. Technol.396343doi:10.1021/ES050090D

[145]  Ma X.Bouchard D.2009Formation of aqueous suspensions of fullerenes.Environ. Sci. Technol.43330doi:10.1021/ES801833P

[146]  Wang Y. G.Li Y. S.Pennell K. D.2008Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands.Environ. Toxicol. Chem.271860doi:10.1897/08-039.1

[147]  Espinasse B.Hotze E. M.Wiesner M. R.2007Transport and retention of colloidal aggregates of C60 in porous media: effects of organic macromolecules, ionic composition, and preparation method.Environ. Sci. Technol.417396doi:10.1021/ES0708767

[148]  Terashima M.Nagao S.2007Solubilization of [60]fullerene in water by aquatic humic substances.Chem. Lett.36302doi:10.1246/CL.2007.302

[149]  Xie B.Xu Z. H.Guo W. H.Li Q. L.2008Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles.Environ. Sci. Technol.422853doi:10.1021/ES702231G

[150]  Chang T. E.Jensen L. R.Kisliuk A.Pipes R. B.Pyrz R.Sokolov A. P.2005Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite.Polymer46439doi:10.1016/J.POLYMER.2004.11.030

[151]  Baughman R. H.Zakhidov A. A.de Heer W. A.2002Carbon nanotubes – the route toward applications.Science297787doi:10.1126/SCIENCE.1060928

[152]  Raffaelle R. P.Landi B. J.Harris J. D.Bailey S. G.Hepp A. F.2005Carbon nanotubes for power applications.Mater. Sci. Eng. B116233doi:10.1016/J.MSEB.2004.09.034

[153]  Banerjee S.Wong S. S.2002Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis.J. Phys. Chem. B10612144doi:10.1021/JP026304K

[154]  Peng Y.Liu H.2006Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes.Ind. Eng. Chem. Res.456483doi:10.1021/IE0604627

[155]  Rosca I. D.Watari F.Uo M.Akasaka T.2005Oxidation of multiwalled carbon nanotubes by nitric acid.Carbon433124doi:10.1016/J.CARBON.2005.06.019

[156]  Hiura H.Ebbesen T. W.Tanigaki K.1995Opening and purification of carbon nanotubes in high yields.Adv. Mater.7275doi:10.1002/ADMA.19950070304

[157]  Hu H.Yu A.Kim E.Zhao B.Itkis M. E.Bekyarova E.Haddon R. C.2005Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes.J. Phys. Chem. B10911520doi:10.1021/JP050781W

[158]  Saleh N. B.Pfefferle L. D.Elimelech M.2008Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications.Environ. Sci. Technol.427963doi:10.1021/ES801251C

[159]  Lee H. S.Yun C. H.2008Translational and rotational diffusions of multiwalled carbon nanotubes with static bending.J. Phys. Chem. C11210653doi:10.1021/JP803363J

[160]  Fairbrother D. H., Smith B., Wnuk J., Wepasnick K., Ball W. P., Cho H., Bangash F. K., Surface oxides on carbon nanotubes (CNTs): effects on CNT stability and sorption properties in aquatic environments, In Nanoscience and Nanotechnology, Environmental and Health Impacts (Ed. V. Grassian) 2008, Ch. 7, pp. 131–150 (John Wiley & Sons, Inc.: New York).

[161]  Schierz A.Zänker H.2009Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption.Environ. Pollut.1571088doi:10.1016/J.ENVPOL.2008.09.045

[162]  Cox M.Pichugin A. A.El-Shafey E. I.Appleton Q.2005Sorption of precious metals onto chemically prepared carbon from flax shive.Hydrometallurgy78137doi:10.1016/J.HYDROMET.2004.12.006

[163]  Li M.Boggs M.Beebe T. P.Huang C. P.2008Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound.Carbon46466doi:10.1016/J.CARBON.2007.12.012

[164]  Esumi K.Ishigami M.Nakajima A.Sawada K.Honda H.1996Chemical treatment of carbon nanotubes.Carbon34279doi:10.1016/0008-6223(96)83349-5

[165]  Shieh Y.-T.Liu G.-L.Wu H.-H.Lee C.-C.2007Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media.Carbon451880doi:10.1016/J.CARBON.2007.04.028

[166]  Papirer E., Adsorption on Silica Surfaces 2000, Vol. 90 (Marcel Dekker, Inc.: New York, NY).

[167]  Hyung H.Fortner J. D.Hughes J. B.Kim J.-H.2007Natural organic matter stabilizes carbon nanotubes in the aqueous phase.Environ. Sci. Technol.41179doi:10.1021/ES061817G

[168]  Lin D.Xing B.2008Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions.Environ. Sci. Technol.425917doi:10.1021/ES800329C

[169]  Hyung H.Kim J.-H.2008Natural organic matter (NOM) adsorption to multiwalled carbon nanotubes: effect of NOM characteristics and water quality parameters.Environ. Sci. Technol.424416doi:10.1021/ES702916H

[170]  Wang X.Tao S.Xing B.2009Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes.Environ. Sci. Technol.436214doi:10.1021/ES901062T

[171]  Yang K.Xing B. S.2009Adsorption of fulvic acid by carbon nanotubes from water.Environ. Pollut.1571095doi:10.1016/J.ENVPOL.2008.11.007

[172]  Elimelech M.O’Melia C. R.1990Effect of electrolyte type on the electrophoretic mobility of polystyrene latex colloids.Colloids Surf.44165doi:10.1016/0166-6622(90)80194-9

[173]  Hou W. C.Jafvert C. T.2009Photochemistry of aqueous C60 clusters: evidence of 1O2 formation and its role in mediating C60 phototransformation.Environ. Sci. Technol.435257doi:10.1021/ES900624S

[174]  Li Q. L.Xie B.Hwang Y. S.Xu Y. J.2009Kinetics of C60 fullerene dispersion in water enhanced by natural organic matter and sunlight.Environ. Sci. Technol.433574doi:10.1021/ES803603X

[175]  Hyung H.Kim J. H.2009Dispersion of C60 in natural water and removal by conventional drinking water treatment processes.Water Res.432463doi:10.1016/J.WATRES.2009.03.011

[176]  Wang C. Y.Bottcher C.Bahnemann D. W.Dohrmann J. K.2003A comparative study of nanometer-sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity.J. Mater. Chem.132322doi:10.1039/B303716A

[177]  Choi J. H.Nguyen F. T.Barone P. W.Heller D. A.Moll A. E.Patel D.Boppart S. A.Strano M. S.2007Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes.Nano Lett.7861doi:10.1021/NL062306V

[178]  Shen L. F.Stachowiak A.Fateen S. E. K.Laibinis P. E.Hatton T. A.2001Structure of alkanoic acid stabilized magnetic fluids. A small-angle neutron and light scattering analysis.Langmuir17288doi:10.1021/LA9916732

Full Text PDF (658.4 KB) Export Citation