Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches

Physico-chemical behaviour and algal toxicity of nanoparticulate CeO2 in freshwater

Nicola J. Rogers A B D , Natasha M. Franklin A , Simon C. Apte B , Graeme E. Batley A B , Brad M. Angel A B , Jamie R. Lead C and Mohammed Baalousha C

A Nanosafety Theme, CSIRO Future Manufacturing Flagship, Locked Bag 2007, Kirrawee, NSW 2232, Australia.

B Centre for Environmental Contaminants Research, CSIRO Land and Water, Locked Bag 2007, Kirrawee, NSW 2232, Australia.

C School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

D Corresponding author. Email: nicola.rogers@csiro.au

Environmental Chemistry 7(1) 50-60 http://dx.doi.org/10.1071/EN09123
Submitted: 1 October 2009  Accepted: 22 December 2009   Published: 22 February 2010

Environmental context. It cannot be assumed that nanomaterials entering aquatic environments will have the same impacts on aquatic biota as their macroscopic particle equivalents. If their toxicities are different, this will have implications for the way in which nanomaterial usage is regulated. Algae, at the bottom of the food chain, are likely to be a sensitive indicator of toxic effects. Understanding the physical and chemical factors controlling nanoparticle toxicity to algae will assist in evaluating their ecological risk.

Abstract. In assessing the risks posed by nanomaterials in the environment, the overriding research challenges are to determine if nanomaterials are more toxic than the bulk forms of the same material, and the extent to which toxicity is governed by particle size and reactivity. In this study, the toxicity of nanoparticulate CeO2 (nominally 10–20 nm) to the freshwater alga Pseudokirchneriella subcapitata was compared to the same material at the micron size (nominally <5 μm). Growth inhibition experiments revealed inhibitory concentration values, giving 50% reduction in algal growth rate after 72 h (IC50), of 10.3 ± 1.7 and 66 ± 22 mg L–1 for the nanoparticles and bulk materials respectively. Cells exposed to CeO2 particles were permeable to the DNA-binding dye SYTOX® Green in a concentration-dependent manner indicating damage to the cell membrane. Screening assays to assess the oxidative activity of the particles showed that the light illumination conditions used during standard algal bioassays are sufficient to stimulate photocatalytic activity of CeO2 particles, causing the generation of hydroxyl radicals and peroxidation of a model plant fatty acid. No oxidative activity or lipid peroxidation was observed in the dark. These findings indicate that inhibitory mode of action of CeO2 to P. subcapitata is mediated by a cell-particle interaction causing membrane damage. The effect is most likely photochemically induced and is enhanced for the nanoparticulate form of the CeO2.

Additional keywords: cerium oxide, microalgae, nanoparticle, photocatalytic activity.


[1]  Klaine S. J.Alvarez P. J. J.Batley G. E.Fernandes T. F.Handy R. D.Lyon D. Y.Mahendra S. H.McLaughlin M. J.et al.2008Nanomaterials in the environment: behaviour, fate, bioavailability and effects.Environ. Toxicol. Chem.271825doi:10.1897/08-090.1

[2]  Apte S. C., Rogers N. J., Batley G. E., Ecotoxicology of manufactured nanoparticles, in Environmental and Health Impacts of Nanotechnology (Eds J. R. Lead, E. Smith) 2009, pp. 267–305 (Blackwell: London).

[3]  Batley G. E., McLaughlin M. J., Fate of manufactured nanomaterials in the Australian environment. CSIRO Niche Manufacturing Flagship Report 2008 (CSIRO: Lucas Heights, NSW).

[4]  Franklin N. M.Rogers N. J.Apte S. C.Batley G. E.Gadd G. E.Casey P. S.2007Comparative toxicity of nanoparticulate ZnO, bulk ZnO and ZnCl2 to a freshwater microalga (Pseudokirchnerilla subcapitata): the importance of particle solubility.Environ. Sci. Technol.418484doi:10.1021/ES071445R

[5]  Aruoja V.Dubourguier H.-C.Kasemets K.Kahru A.2009Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchnerilla subcapitata.Sci. Total Environ.4071461doi:10.1016/J.SCITOTENV.2008.10.053

[6]  Hayes S. A.Yu P.O’Keefe T. J.O’Keefe M. J.Stoffer J. O.2002The phase stability of cerium species in aqueous systems. I. E-pH diagram for the Ce-HClO4-H2O system.J. Electrochem. Soc.149C623doi:10.1149/1.1516775

[7]  den Dooren de Jong L. E.Roman W. B.1965Tolerance of Chlorella vulgaris for metallic and non-metallic ions.Antonie van Leeuwenhoek31301doi:10.1007/BF02045910

[8]  Borgmann U.Couillard Y.Doyle P.Dixon D. G.2005Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness.Environ. Toxicol. Chem.24641doi:10.1897/04-177R.1

[9]  Park B.Martin P.Harris C.Guest R.Whittingham A.Jenkinson P.Handley J.2007Initial in vitro screening approach to investigate the potential health and environmental hazards of EnviroxTM – a nanoparticle cerium dioxide diesel fuel additive.Part. Fibre Toxicol.412doi:10.1186/1743-8977-4-12

[10]  Van Hoecke K.Quik J. T. K.Mankiewicz-boczek J.De Schamphelaere K. A. C.Elsaesser A.Van Der Meeren P.Barnes C.McKerr G.et al.2009Fate and effects of CeO2 nanoparticles in aquatic toxicity tests.Environ. Sci. Technol.434537doi:10.1021/ES9002444

[11]  Bamwenda G. R.Arakawa H.2000Cerium dioxide as a photocatalyst for water decomposition to O2 in the presence of Ceaq4+ and Feaq3+ species.J. Mol. Catal.161105doi:10.1016/S1381-1169(00)00270-3

[12]  Rouzaud J. N.Oberlin A.1989Structure, microtexture, and optical properties of anthracene and saccharose-based carbons.Carbon27517doi:10.1016/0008-6223(89)90002-X

[13]  Williams D. B., Carter C. B., Transmission Electron Microscopy – A Textbook for Materials Science 1996 (Plenum Press: New York).

[14]  Keast V. J.Scott A. J.Brydson R.Williams D. B.Bruley J.2001Electron energy-loss near-edge structure – a tool for the investigation of electronic structure on the nanometric scale.J. Microsc.203135doi:10.1046/J.1365-2818.2001.00898.X

[15]  Miyauchi M.Nakajima A.Watanabe T.Hashimoto K.2002Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films.Chem. Mater.142812doi:10.1021/CM020076P

[16]  Goto H.Hanada Y.Ohno T.Matsumura M.2004Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles.J. Catal.225223doi:10.1016/J.JCAT.2004.04.001

[17]  Černigoj U.Lavrenčič Štangar U.Trebše P.Sarakha M.2009Determination of catalytic properties of TiO2 coatings using aqueous solution of coumarin: standardization efforts.J. Photochem. Photobiol. A201142doi:10.1016/J.JPHOTOCHEM.2008.10.014

[18]  Rael L. T.Thomas G. W.Craun M. L.Curtis C. G.Bar-Or R.Bar-Or D.2004Lipid peroxidation and the thiobarbituric acid assay: standardization of the assay when using saturated and unsaturated fatty acids.J. Biochem. Mol. Biol.37749

[19]  Zhang F.Wang P.Koberstein J.Khalid S.Chan S.-W.2004Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy.Surf. Sci.56374

[20]  Auffan M.Rose J.Orsiere T.De Meo M.Thill A.Zeyons O.Proux O.Masion A.et al.2009CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro.Nanotoxicol3161doi:10.1080/17435390902788086

[21]  Auffan M.Rose J.Wiesner M. R.Bottero J.-Y.2009Chemical stability of metallic nanoparticles: A parameter controlling their potential cellular toxicity in vitro.Environ. Pollut.1571127doi:10.1016/J.ENVPOL.2008.10.002

[22]  Klabunde K. J.Stark J.Koper O.Mohs C.Park D. G.Decker S.Jiang Y.Lagadic Y. I.et al.1996Nanocrystals as stoichiometric reagents with unique surface chemistry.J. Phys. Chem.10012142doi:10.1021/JP960224X

[23]  Stoimenov P. K.Klinger R. L.Marchin G. L.Klabunde K. J.2002Metal oxide nanoparticles as bactericidal agents.Langmuir186679doi:10.1021/LA0202374

[24]  Morones J. R.Elechiguerra J. L.Camacho A.Holt K.Kouri J. B.Ramirez J. T.Yacaman M. J.2005The bactericidal effect of silver nanoparticles.Nanotech162346doi:10.1088/0957-4484/16/10/059

[25]  Brayner R.Ferrari-Iliou R.Brivois N.Djediat S.Benedetti M. F.Fievet F.2006Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium.Nano Lett.6866doi:10.1021/NL052326H

[26]  Veldhuis M. J. W.Cucci T. L.Sieracki M. E.1997Cellular DNA content of marine phytoplankton using two new fluorochromes: taxonomic and ecological implications.J. Phycol.33527doi:10.1111/J.0022-3646.1997.00527.X

[27]  Thill A.Zeyons O.Spalla O.Chauvat F.Rose J.Auffan M.Flank A. M.2006Cytotoxicity of CeO2 nanoparticle for Escherichia coli; physico-chemical insight of the cytotoxicity mechanism.Environ. Sci. Technol.406151doi:10.1021/ES060999B

[28]  Park E.-J.Choi J.Park Y.-K.Park K.2008Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells.Toxicology24590doi:10.1016/J.TOX.2007.12.022

[29]  Franklin N. M.Stauber J. L.Lim R. P.2004Development of multispecies algal bioassays using flow cytometry.Environ. Toxicol. Chem.231452doi:10.1897/03-250

[30]  Schubert D.Dargusch R.Raitano J.Chan S.-W.2006Cerium and yttrium oxide nanoparticles are neuroprotective.Biochem. Biophys. Res. Commun.34286doi:10.1016/J.BBRC.2006.01.129

[31]  Hernández-Alonso M. D.Hungrıa A. B.Martınez-Arias A.Fernández-Garcıa M.Coronado J. M.Conesa J. C.Soria J.2004EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation.Appl. Catal. B50167doi:10.1016/J.APCATB.2004.01.016

[32]  Zhai Y.Zhang S.Pang Preparation H.2007characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant.Mater. Lett.611863doi:10.1016/J.MATLET.2006.07.146

[33]  Tiede K.Hassellöv M.Breitbarth E.Chaudhry Q.Boxall A. B. A.2009Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles.J. Chromatogr. A1216503doi:10.1016/J.CHROMA.2008.09.008

Export Citation Cited By (79)