Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH FRONT

Synchrotron X-ray distinction of seasonal hydrological and temperature patterns in speleothem carbonate

Peter M. Wynn A I , Ian J. Fairchild B , Christoph Spötl C , Adam Hartland D , Dave Mattey E , Barbara Fayard F G and Marine Cotte F H

A Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK.

B School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, Edgbaston, B15 2TT, UK.

C Institut für Geologie und Paläontologie, Leopold-Franzens-Universität Innsbruck, Innrain 52, A-6020 Innsbruck, Austria.

D Chemistry Department and Environmental Research Institute, Faculty of Science and Engineering, Environmental Research Institute, University of Waikato, Hamilton 3240, New Zealand.

E Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK.

F European Synchrotron Radiation Facility, F-38043 Grenoble cedex, France.

G Laboratoire de Physique des Solides, UMR 8502, Bât 510, Université Paris Sud, F-91405 Orsay cedex, France.

H UPMC Univ. Paris 06, UMR 8220, Laboratory of Molecular and Structural Archeology – LAMS, Paris, France.

I Corresponding author. Email: p.wynn@lancaster.ac.uk

Environmental Chemistry 11(1) 28-36 http://dx.doi.org/10.1071/EN13082
Submitted: 23 April 2013  Accepted: 9 October 2013   Published: 30 January 2014

Environmental context. Speleothem chemical records are used to reconstruct environmental change on a broad range of timescales. However, one of the biggest challenges is to link the records contained within speleothems at the sub-annual timescale to changing meteorological conditions. Seasonal infiltration patterns and cave ventilation dynamics are reconstructed through high resolution analysis of speleothem trace element content by synchrotron radiation, building towards proxy records of hydrological variability and winter duration as indices of recent climatic change beyond the instrumental period.

Abstract. Synchrotron micro-X-ray fluorescence (µXRF) spectrometry is used to reveal trace element patterns within speleothem calcite at the sub-annual scale and provide one of the first calibrations to prevailing meteorological conditions. Mapping of Zn and SO42– within speleothem calcite was performed at the European Synchrotron Radiation Facility over three annual cycles (1977–1979). Peaks in µXRF Zn concentrations occur on an annual basis, although banding of lower XRF intensity reveals multiple events at the sub-annual scale. The delivery of Zn to the speleothem was found to be dependent upon the presence of a water excess, the condition of any overlying snowpack and the pH of the soil solution as controlled by microbial activity. This generated a pattern of Zn event laminae that documented increasing concentrations from winter through to the following autumn and complies with existing models inferring surface-active trace metals are delivered to the point of speleothem growth in association with natural organic matter (referred to as NOM–metal complexes). Minimum and maximum concentrations of speleothem SO42– coincide with winter and summer respectively, in contrast to the near constant SO42– concentrations of the drip water. Fluctuations in speleothem SO42– levels closely follow changes in cave external temperatures, thereby validating existing models of sulfate incorporation into carbonate minerals thought to be driven by cave ventilation dynamics and internal cave atmospheric pCO2 (partial pressure). At the current resolution of analysis, this represents some of the first evidence linking event-based meteorological (temperature and precipitation) records to the trace element content of speleothem calcite, building towards reconstruction of indices of climatic change beyond the instrumental period.


References

[1]  P. Treble, J. M. G. Shelley, J. Chappell, Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia. Earth Planet. Sci. Lett. 2003, 216, 141.
Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia.CrossRef | 1:CAS:528:DC%2BD3sXos1ajurw%3D&md5=d91d02361ff0feec33e58361c29d43c7CAS | open url image1

[2]  P. Treble, J. Chappell, J. M. G. Shelley, Complex speleothem growth processes revealed by trace element mapping and scanning electron microscopy of annual layers. Geochim. Cosmochim. Acta 2005, 69, 4855.
Complex speleothem growth processes revealed by trace element mapping and scanning electron microscopy of annual layers.CrossRef | 1:CAS:528:DC%2BD2MXhtFOgs73N&md5=39fd3a88e05ac7fd1e78a20ffd316171CAS | open url image1

[3]  K. R. Johnson, H. Chaoyong, N. S. Belshaw, G. M. Henderson, Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction. Earth Planet. Sci. Lett. 2006, 244, 394.
Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction.CrossRef | 1:CAS:528:DC%2BD28XjtVOntLk%3D&md5=4cb7859902497544eaf6eb9348a7fe07CAS | open url image1

[4]  A. Borsato, S. Frisia, I. J. Fairchild, A. Somogyi, J. Susini, Trace element distribution in annual stalagmite laminae mapped by micrometer resolution X-ray fluorescence: implications for incorporation of environmentally significant species. Geochim. Cosmochim. Acta 2007, 71, 1494.
Trace element distribution in annual stalagmite laminae mapped by micrometer resolution X-ray fluorescence: implications for incorporation of environmentally significant species.CrossRef | 1:CAS:528:DC%2BD2sXis1Gjs7w%3D&md5=c737172d76f449816b43d5e7a8c5871fCAS | open url image1

[5]  D. Mattey, D. Lowry, J. Duffet, R. Fisher, E. Hodge, S. Frisia, A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gribraltar speleothem: Reconstructed drip water and relationship to local precipitation. Earth Planet. Sci. Lett. 2008, 269, 80.
A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gribraltar speleothem: Reconstructed drip water and relationship to local precipitation.CrossRef | 1:CAS:528:DC%2BD1cXlsFClsLw%3D&md5=1b1fedc479a65299674846322cd15765CAS | open url image1

[6]  I. J. Fairchild, C. Spötl, S. Frisia, A. Borsato, J. Susini, P. M. Wynn, J. Cauzid, EIMF. Petrology and geochemistry of annually laminated stalagmites from an alpine cave (Obir, Austria): seasonal cave physiology, in Tufas and speleothems: unravelling the microbial and physical controls. Geological Society of London Special Publication (Eds H. M. Pedley, M. Rogerson), 2010, Vol. 336, pp. 295–321 (The Geological Society: London).

[7]  M. S. Roberts, P. Smart, A. Baker, Annual trace element variations in a Holocene speleoethem. Earth Planet. Sci. Lett. 1998, 154, 237.
Annual trace element variations in a Holocene speleoethem.CrossRef | 1:CAS:528:DyaK1cXhtFyhsrw%3D&md5=4099b19fc0c01a00c172bf56a47441e5CAS | open url image1

[8]  I. J. Fairchild, A. Baker, A. Borsato, S. Frisia, R. W. Hinton, F. McDermott, A. F. Tooth, High resolution, multiple trace element variation in speleothems. J. Geol. Soc. London 2001, 158, 831.
High resolution, multiple trace element variation in speleothems.CrossRef | 1:CAS:528:DC%2BD3MXotl2ltbk%3D&md5=de00870f10ac5c4df18aa7311a0a1208CAS | open url image1

[9]  S. Frisia, A. Borsato, I. J. Fairchild, J. Susini, Variations in atmospheric sulphate recorded in stalagmites by synchrotron micro-XRF and XANES analyses. Earth Planet. Sci. Lett. 2005, 235, 729.
Variations in atmospheric sulphate recorded in stalagmites by synchrotron micro-XRF and XANES analyses.CrossRef | 1:CAS:528:DC%2BD2MXlvVCrt7g%3D&md5=6823646fceb52952d09bee338201575eCAS | open url image1

[10]  A. Hartland, I. J. Fairchild, J. R. Lead, A. Borsato, A. Baker, S. Frisia, M. Baalousha, From soil to cave: Transport of trace metals by natural organic matter in dripwaters. Chem. Geol. 2012, 304–305, 68.
From soil to cave: Transport of trace metals by natural organic matter in dripwaters.CrossRef | open url image1

[11]  A. Hartland, Colloidal geochemistry of speleothem-forming groundwaters 2011, Ph.D. thesis, University of Birmingham.

[12]  A. Hartland, I. J. Fairchild, J. R. Lead, H. Zhang, M. Baalousha, Size, speciation and lability of NOM–metal complexes in hyperalkaline cave dripwater. Geochim. Cosmochim. Acta 2011, 75, 7533.
Size, speciation and lability of NOM–metal complexes in hyperalkaline cave dripwater.CrossRef | 1:CAS:528:DC%2BC3MXhsVylsrjP&md5=ce1862b98abfd57375ebb4d4971f2b03CAS | open url image1

[13]  J. F. McCarthy, L. Shevenell, Processes controlling colloid composition in a fractured and karstic aquifer in eastern Tennessee, USA. J. Hydrol. 1998, 206, 191.
Processes controlling colloid composition in a fractured and karstic aquifer in eastern Tennessee, USA.CrossRef | 1:CAS:528:DyaK1cXjtVKrtb4%3D&md5=bbbfbc4477eb91f0d18274ec0abe2cdaCAS | open url image1

[14]  N. Goppert, N. Goldscheider, Solute and colloid transport in karst conduits under low- and high-flow conditions. Ground Water 2008, 46, 61.
| 18181865PubMed | open url image1

[15]  J. F. McCarthy, L. D. McKay, Colloid transport in the subsurface: past, present and future challenges. Vadose Zone J. 2004, 3, 326.
| 1:CAS:528:DC%2BD2cXptF2mtLw%3D&md5=e7dbf2b61d949b6b5d4a218a5b6b385cCAS | open url image1

[16]  L. Shevenell, J. F. McCarthy, Effects of precipitation events on colloids in a karst aquifer. J. Hydrol. 2002, 255, 50.
Effects of precipitation events on colloids in a karst aquifer.CrossRef | 1:CAS:528:DC%2BD38XmtVWksA%3D%3D&md5=2a86b6acf277d793ff8e8c220b491700CAS | open url image1

[17]  T. Kanti Sen, K. C. Khilar, Review on subsurface colloids and colloid associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci. 2006, 119, 71.
Review on subsurface colloids and colloid associated contaminant transport in saturated porous media.CrossRef | 1:CAS:528:DC%2BD28XhslKgur8%3D&md5=b8961080882b579a31f7ed6ba8d3282aCAS | 16324681PubMed | open url image1

[18]  F. W. Cruz, I. Karmann, G. B. Magdaleno, N. Coichev, O. Viana, Influence of hydrological and climatic parameters on spatial-temporal variability of fluorescence intensity and DOC of karst percolation waters in the Santana Cave System, southeastern Brazil. J. Hydrol. 2005, 302, 1.
Influence of hydrological and climatic parameters on spatial-temporal variability of fluorescence intensity and DOC of karst percolation waters in the Santana Cave System, southeastern Brazil.CrossRef | 1:CAS:528:DC%2BD2cXhtFGhsL7I&md5=7e3ea8d83c17fd1c797dc1b00e3130adCAS | open url image1

[19]  I. J. Fairchild, A. Baker, Speleothem Science: from Process to Past Environments 2012 (Wiley–Blackwell: Sussex, UK).

[20]  P. M. Wynn, I. J. Fairchild, A. Baker, S. Frisia, A. Borsato, J. Baldini, F. McDermott, Isotopic archives of sulphur in speleothems. Geochim. Cosmochim. Acta 2008, 72, 2465.
Isotopic archives of sulphur in speleothems.CrossRef | 1:CAS:528:DC%2BD1cXlvFKlsrw%3D&md5=47be104a9847bf422bc44235a364f8f3CAS | open url image1

[21]  P. M. Wynn, I. J. Fairchild, S. Frisia, C. Spötl, A. Baker, A. Borsato, EIMF, High-resolution sulphur isotope analysis of speleothem carbonate by secondary ionisation mass spectrometry. Chem. Geol. 2010, 271, 101.
EIMF, High-resolution sulphur isotope analysis of speleothem carbonate by secondary ionisation mass spectrometry.CrossRef | 1:CAS:528:DC%2BC3cXivVyrur4%3D&md5=caf3e3f2e57e9672ea053f5708764199CAS | open url image1

[22]  S. Frisia, A. Borsato, J. Susini, Synchrotron radiation applications to past volcanism archived in speleothems: an overview. J. Volcanol. Geotherm. Res. 2008, 177, 96.
Synchrotron radiation applications to past volcanism archived in speleothems: an overview.CrossRef | 1:CAS:528:DC%2BD1cXht1KmtbnK&md5=585d9717d2dbcd96b8a32bdb7881f156CAS | open url image1

[23]  P. M. Wynn, A. Borsato, A. Baker, S. Frisia, R. Miorandi, I. J. Fairchild, Biogeochemical cycling of sulphur in karst and transfer into speleothem archives at grotta di ernesto, Italy. Biogeochemistry 2013, 114, 255.
Biogeochemical cycling of sulphur in karst and transfer into speleothem archives at grotta di ernesto, Italy.CrossRef | 1:CAS:528:DC%2BC3sXhtVSmtbzO&md5=4c27e9bc4b2f83dc5349393f56ec2dcfCAS | open url image1

[24]  C. Spötl, I. J. Fairchild, A. F. Tooth, Cave air control on dripwater geochemistry, Obir caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochim. Cosmochim. Acta 2005, 69, 2451.
Cave air control on dripwater geochemistry, Obir caves (Austria): implications for speleothem deposition in dynamically ventilated caves.CrossRef | open url image1

[25]  E. Busenberg, L. N. Plummer, Kinetic and thermodynamic factors controlling the distribution of SO42– and Na+ in calcites and selected aragonites. Geochim. Cosmochim. Acta 1985, 49, 713.
Kinetic and thermodynamic factors controlling the distribution of SO42– and Na+ in calcites and selected aragonites.CrossRef | 1:CAS:528:DyaL2MXhs12qs7Y%3D&md5=9f7cbe09c76d5160e70ac53aee9dbb24CAS | open url image1

[26]  C. W. Thornthwaite, An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55.
An approach toward a rational classification of climate.CrossRef | open url image1

[27]  C. L. Smith, I. J. Fairchild, C. Spötl, S. Frisia, A. Borsato, S. G. Moreton, P. M. Wynn, Chronology-building using objective identification of annual signals in trace element profiles of stalagmites. Quat. Geochronol. 2009, 4, 11.
Chronology-building using objective identification of annual signals in trace element profiles of stalagmites.CrossRef | open url image1

[28]  M. Cotte, E. Checroun, J. Susini, P. Walter, Micro-analytical study of interactions between oil and lead compounds in paintings. Appl. Phys., A Mater. Sci. Process. 2007, 89, 841.
Micro-analytical study of interactions between oil and lead compounds in paintings.CrossRef | 1:CAS:528:DC%2BD2sXhtFyksrnM&md5=790ef69c26b6557648332a329d729706CAS | open url image1

[29]  V. A. Solé, E. Papillon, M. Cotte, P. Walter, J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta B 2007, 62, 63.
A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra.CrossRef | open url image1

[30]  Y. Y. Shopov, D. C. Ford, H. P. Schwarcz, Luminescent microbanding in speleothems: high resolution chronology and palaeoclimate. Geology 1994, 22, 407.
Luminescent microbanding in speleothems: high resolution chronology and palaeoclimate.CrossRef | open url image1

[31]  M. Tan, A. Baker, D. Genty, C. Smith, J. Esper, B. G. Cai, Applications of stalagmite laminae to palaeoclimate reconstructions: comparison with dendrochronology/climatology. Quat. Sci. Rev. 2006, 25, 2103.
Applications of stalagmite laminae to palaeoclimate reconstructions: comparison with dendrochronology/climatology.CrossRef | open url image1

[32]  F. Ban, G. Pan, J. Zhu, B. Cai, M. Tan, Temporal and spatial variations in the discharge and dissolved organic carbon of drip waters in Beijing Shihua Cave, China. Hydrol. Processes 2008, 22, 3749.
Temporal and spatial variations in the discharge and dissolved organic carbon of drip waters in Beijing Shihua Cave, China.CrossRef | 1:CAS:528:DC%2BD1cXhtFyltrnI&md5=7c3265a05a53b43bfb9c269e09f1ca05CAS | open url image1

[33]  M. W. Williams, J. M. Melack, Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada. Water Resour. Res. 1991, 27, 1575.
Solute chemistry of snowmelt and runoff in an alpine basin, Sierra Nevada.CrossRef | 1:CAS:528:DyaK3MXmtl2js7c%3D&md5=c29f0ba901266ed25c09653991182b68CAS | open url image1

[34]  S. Frisia, I. J. Fairchild, J. Fohlmeister, R. Miorandi, C. Spötl, A. Borsato, Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves. Geochim. Cosmochim. Acta 2011, 75, 380.
Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves.CrossRef | 1:CAS:528:DC%2BC3cXhsFyjurzF&md5=841db66f38e079f5b6acd58597fc7908CAS | open url image1


Full Text PDF (899 KB) Export Citation Cited By (10)