Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Phosphorus and arsenic distributions in a seasonally stratified, iron- and manganese-rich lake: microbiological and geochemical controls

Adam Hartland A C , Martin S. Andersen B and David P. Hamilton A
+ Author Affiliations
- Author Affiliations

A Environmental Research Institute, School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.

B Connected Waters Initiative Research Centre, UNSW Australia, 110 King Street, Manly Vale, NSW 2093, Australia.

C Corresponding author. Email: a.hartland@waikato.ac.nz

Environmental Chemistry 12(6) 708-722 https://doi.org/10.1071/EN14094
Submitted: 2 May 2014  Accepted: 18 February 2015   Published: 10 July 2015

Environmental context. Despite being present at trace concentrations, arsenic and phosphorus are among the most important of freshwater contaminants. This research highlights the biogeochemical coupling of both elements in a New Zealand lake. We find that the mineralisation of organic residues coupled to the dissolution of colloidal iron and manganese hydroxides may be an important driver of the bioavailability of phosphorus and arsenic.

Abstract. Seasonal stratification in temperate lakes greater than a few metres deep provides conditions amenable to pronounced vertical zonation of redox chemistry. Such changes are particularly evident in eutrophic systems where high phytoplankton biomass often leads to seasonally established anaerobic hypolimnia and profound changes in geochemical conditions. In this study, we investigated the behaviour of trace elements in the water column of a seasonally stratified, eutrophic lake. Two consecutive years of data from Lake Ngapouri, North Island, New Zealand, demonstrate the occurrence of highly correlated profiles of phosphorus, arsenic, iron and manganese, all of which increased in concentration by 1–2 orders of magnitude within the anaerobic hypolimnion. Stoichiometric and mass-balance considerations demonstrate that increases in alkalinity in hypolimnetic waters were consistent with observed changes in sulfate, Fe and Mn concentrations with depth, corresponding to dissimilatory reduction of sulfate, FeIII and MnIV hydroxides. Thermodynamic constraints on Fe, Mn and Al solubility indicate that amorphous FeIII, MnIV hydroxides most probably controlled Fe and Mn in the surface mixed layer (~0 to 8 m) whereas AlIII hydroxides were supersaturated throughout the entire system. Surface complexation modelling indicated that iron hydroxides (HFO) potentially dominated As speciation in the lake. It is likely that other colloidal phases such as allophanic clays also limited HPO42– activity, reducing competition for HAsO42– adsorption to iron hydroxides. This research highlights the coupling of P, As, Fe and Mn in Lake Ngapouri, and the apparent role of multiple colloidal phases in affecting P and As activity within overarching microbiological and geochemical processes.


References

[1]  S. H. Frisbie, R. Ortega, D. M. Maynard, B. Sarkar, The concentrations of arsenic and other toxic elements in Bangladesh’s drinking water. Environ. Health Perspect. 2002, 110, 1147.
The concentrations of arsenic and other toxic elements in Bangladesh’s drinking water.CrossRef | 1:CAS:528:DC%2BD38XpsVymtr8%3D&md5=dd874f7699485a1934655c39e7b95b43CAS | 12417487PubMed | open url image1

[2]  H. W. Paerl, N. S. Hall, E. S. Calandrino, Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 2011, 409, 1739.
Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change.CrossRef | 1:CAS:528:DC%2BC3MXjtFSmtrk%3D&md5=a7aa7e3c6730aa369f1749b84ff8f524CAS | 21345482PubMed | open url image1

[3]  W. M. Lewis, W. A. Wurtsbaugh, Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. Int. Rev. Hydrobiol. 2008, 93, 446.
Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm.CrossRef | 1:CAS:528:DC%2BD1cXhsVGgt7nK&md5=c9a9edfc9535662796edafed0e980599CAS | open url image1

[4]  W. M. Lewis, W. A. Wurtsbaugh, H. W. Paerl, Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters. Environ. Sci. Technol. 2011, 45, 10 300.
Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters.CrossRef | 1:CAS:528:DC%2BC3MXhsVeqtbvP&md5=6ae095eb7f310c99700b3104f3fb6105CAS | open url image1

[5]  D. Postma, F. Larsen, N. T. Thai, P. T. K. Trang, R. Jakobsen, P. Q. Nhan, T. V. Long, P. H. Viet, A. S. Murray, Groundwater arsenic concentrations in Vietnam controlled by sediment age. Nat. Geosci. 2012, 5, 656.
Groundwater arsenic concentrations in Vietnam controlled by sediment age.CrossRef | 1:CAS:528:DC%2BC38XhtFCgs7jP&md5=186c13aad17adae148684d2a1ff79725CAS | open url image1

[6]  D. K. Nordstrom, Worldwide occurrences of arsenic in ground water. Science 2002, 296, 2143.
Worldwide occurrences of arsenic in ground water.CrossRef | 1:CAS:528:DC%2BD38XkvFGhs7o%3D&md5=75b02a7ce87fdb6930bf5676c809b10eCAS | 12077387PubMed | open url image1

[7]  G. Lord, N. Kim, N. I. Ward, Arsenic speciation of geothermal waters in New Zealand. J. Environ. Monit. 2012, 14, 3192.
Arsenic speciation of geothermal waters in New Zealand.CrossRef | 1:CAS:528:DC%2BC38Xhslygt7fP&md5=d1d6bc3e5907854fb8143f35b3976270CAS | 23147530PubMed | open url image1

[8]  B. Robinson, H. Outred, R. Brooks, J. Kirkman, The distribution and fate of arsenic in the Waikato River system, North Island, New Zealand. Chem. Spec. Bioavail. 1995, 7, 89.
| 1:CAS:528:DyaK28Xhs12rt78%3D&md5=d0dbe845c6b3d2173272023f25e5f85eCAS | open url image1

[9]  K. L. Linge, C. E. Oldham, Control mechanisms for dissolved phosphorus and arsenic in a shallow lake. Appl. Geochem. 2004, 19, 1377.
Control mechanisms for dissolved phosphorus and arsenic in a shallow lake.CrossRef | 1:CAS:528:DC%2BD2cXkvVWnsLg%3D&md5=c26a65c88fb7ab2a023f1b2b8af8572aCAS | open url image1

[10]  A. A. Rivaie, P. Loganathan, J. D. Graham, R. W. Tillman, T. W. Payn, Effect of phosphate rock and triple superphosphate on soil phosphorus fractions and their plant-availability and downward movement in two volcanic ash soils under Pinus radiata plantations in New Zealand. Nutr. Cycl. Agroecosyst. 2008, 82, 75.
Effect of phosphate rock and triple superphosphate on soil phosphorus fractions and their plant-availability and downward movement in two volcanic ash soils under Pinus radiata plantations in New Zealand.CrossRef | 1:CAS:528:DC%2BD1cXptVKqtbc%3D&md5=809bb37f38b0be054bbe44aeefcf09eaCAS | open url image1

[11]  C. W. Hickey, M. M. Gibbs, Lake sediment phosphorus release management-decision support and risk assessment framework. N. Z. J. Mar. Freshw. Res. 2009, 43, 819.
Lake sediment phosphorus release management-decision support and risk assessment framework.CrossRef | 1:CAS:528:DC%2BD1MXhtFKntb7O&md5=d7e39408c84a52981d1a8f25e581ab27CAS | open url image1

[12]  G. R. Fish, Lake Rerewhakaaitu – an apparently phosphate-free lake. N. Z. J. Mar. Freshw. Res. 1978, 12, 257.
Lake Rerewhakaaitu – an apparently phosphate-free lake.CrossRef | 1:CAS:528:DyaE1MXks1agsr0%3D&md5=17ff05f7e501d76ab0889c4da711c6ccCAS | open url image1

[13]  J. P. Gustafsson, Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil. Eur. J. Soil Sci. 2001, 52, 639.
Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil.CrossRef | 1:CAS:528:DC%2BD38XltVKqtg%3D%3D&md5=3884d360c280bc7b6676aeb299a0876cCAS | open url image1

[14]  C. Su, J. B. Harsh, Dissolution of allophane as a thermodynamically unstable solid in the presence of boehmite at elevated temperatures and equilibrium vapor pressures. Soil Sci. 1998, 163, 299.
Dissolution of allophane as a thermodynamically unstable solid in the presence of boehmite at elevated temperatures and equilibrium vapor pressures.CrossRef | 1:CAS:528:DyaK1cXivFKrsbg%3D&md5=1e12d97e98ef8c37a564d4dc7eb90f73CAS | open url image1

[15]  Y. Arai, D. L. Sparks, J. A. Davis, Arsenate adsorption mechanisms at the allophane–water interface. Environ. Sci. Technol. 2005, 39, 2537.
Arsenate adsorption mechanisms at the allophane–water interface.CrossRef | 1:CAS:528:DC%2BD2MXitVGju7Y%3D&md5=290108b61069373c9569d59c5f138c41CAS | 15884346PubMed | open url image1

[16]  R. L. Parfitt, Phosphate reactions with natural allophane, ferrihydrite and goethite. J. Soil Sci. 1989, 40, 359.
Phosphate reactions with natural allophane, ferrihydrite and goethite.CrossRef | 1:CAS:528:DyaL1MXlsFOksL4%3D&md5=4775c5b14513d89bdf0fb289148ea312CAS | open url image1

[17]  R. L. Parfitt, Allophane in New Zealand – a review. Aust. J. Soil Res. 1990, 28, 343.
Allophane in New Zealand – a review.CrossRef | 1:CAS:528:DyaK3MXmsF2itQ%3D%3D&md5=52f7232e02abf22210136391d801d802CAS | open url image1

[18]  D. Özkundakci, D. P. Hamilton, R. McDowell, S. Hill, Phosphorus dynamics in sediments of a eutrophic lake derived from 31P nuclear magnetic resonance spectroscopy. Mar. Freshwater Res. 2014, 65, 70.
Phosphorus dynamics in sediments of a eutrophic lake derived from 31P nuclear magnetic resonance spectroscopy.CrossRef | open url image1

[19]  W. Davison, Iron and manganese in lakes. Earth Sci. Rev. 1993, 34, 119.
Iron and manganese in lakes.CrossRef | 1:CAS:528:DyaK3sXmsFKjsb0%3D&md5=95a1d8f7673240da4f61d7930017dcb8CAS | open url image1

[20]  J. Hamilton-Taylor, E. J. Smith, W. Davison, M. Sugiyama, Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behavior in a seasonally anoxic lake. Geochim. Cosmochim. Acta 2005, 69, 1947.
Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behavior in a seasonally anoxic lake.CrossRef | 1:CAS:528:DC%2BD2MXjsFant7g%3D&md5=3b1017b772f0b6293a215ba166950401CAS | open url image1

[21]  T. F. Rozan, M. Taillefert, R. E. Trouwborst, B. T. Glazer, S. Ma, J. Herszage, L. M. Valdes, K. S. Price, G. W. Luther III, Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms. Limnol. Oceanogr. 2002, 47, 1346.
Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms.CrossRef | 1:CAS:528:DC%2BD38XnvVWgtbs%3D&md5=9d5115d6f6927692820ce5df920e8a62CAS | open url image1

[22]  J. M. Abell, D. Özkundakci, D. P. Hamilton, S. D. Miller, Relationships between land use and nitrogen and phosphorus in New Zealand lakes. Mar. Freshwater Res. 2011, 62, 162.
Relationships between land use and nitrogen and phosphorus in New Zealand lakes.CrossRef | 1:CAS:528:DC%2BC3MXitlejt7o%3D&md5=574d687c502bd5865fda67ab764f6dc9CAS | open url image1

[23]  J. M. Abell, D. P. Hamilton, Bioavailability of phosphorus transported during storm flow to a eutrophic, polymictic lake. N. Z. J. Mar. Freshw. Res. 2013, 47, 481.
Bioavailability of phosphorus transported during storm flow to a eutrophic, polymictic lake.CrossRef | 1:CAS:528:DC%2BC3sXht1SjtbrK&md5=5adb47566672d1bd84568dc4e88aba2cCAS | open url image1

[24]  D. F. Burger, D. P. Hamilton, C. A. Pilditch, Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake. Ecol. Modell. 2008, 211, 411.
Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake.CrossRef | open url image1

[25]  L. A. Molot, S. B. Watson, I. F. Creed, C. G. Trick, S. K. McCabe, M. J. Verschoor, R. J. Sorichetti, C. Powe, J. J. Venkiteswaran, S. L. Schiff, A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron. Freshw. Biol. 2014, 59, 1323.
A novel model for cyanobacteria bloom formation: the critical role of anoxia and ferrous iron.CrossRef | 1:CAS:528:DC%2BC2cXmtVCjtbY%3D&md5=017302e443b147e9953cbf235e7d208bCAS | open url image1

[26]  L. K. Pearson, C. H. Hendy, D. P. Hamilton, W. B. Silvester, Nitrogen-15 isotope enrichment in benthic boundary layer gases of a stratified eutrophic iron and manganese rich lake. Aquat. Geochem. 2012, 18, 1.
Nitrogen-15 isotope enrichment in benthic boundary layer gases of a stratified eutrophic iron and manganese rich lake.CrossRef | 1:CAS:528:DC%2BC3MXhsFKkurjO&md5=30ea0b9c3aa62c732289da3cc801812eCAS | open url image1

[27]  Y. Gao, J. C. Cornwell, D. K. Stoecker, M. S. Owens, Effects of cyanobacterial-driven pH increases on sediment nutrient fluxes and coupled nitrification-denitrification in a shallow fresh water estuary. Biogeosciences 2012, 9, 2697.
Effects of cyanobacterial-driven pH increases on sediment nutrient fluxes and coupled nitrification-denitrification in a shallow fresh water estuary.CrossRef | 1:CAS:528:DC%2BC38Xhsl2lt7bI&md5=d3b2ceac6b26a21d87e74882d615b3b6CAS | open url image1

[28]  J. M. Abell, D. Özkundakci, D. P. Hamilton, Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand Lakes: implications for eutrophication control. Ecosystems 2010, 13, 966.
Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand Lakes: implications for eutrophication control.CrossRef | 1:CAS:528:DC%2BC3cXht1GktbfK&md5=16dcb5abebd2616a8222af9bce01399dCAS | open url image1

[29]  D. P. Hamilton, K. R. O’Brien, M. A. Burford, J. D. Brookes, C. G. McBride, Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquat. Sci. 2010, 72, 295.
Vertical distributions of chlorophyll in deep, warm monomictic lakes.CrossRef | 1:CAS:528:DC%2BC3cXms1SisLg%3D&md5=bdf18c589eedf6d3d975767ef71e95f6CAS | open url image1

[30]  L. K. Pearson, Sediment-pore water chemistry of Taupo Volcanic Zone lakes and the effect trophic state has on exchange with the water column 2012, Ph.D. thesis, University of Waikato, Hamilton.

[31]  D. J. Lowe, P. A. R. Shane, B. V. Alloway, R. M. Newnham, Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30 000 years ago: a framework for NZ-INTIMATE. Quat. Sci. Rev. 2008, 27, 95.
Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30 000 years ago: a framework for NZ-INTIMATE.CrossRef | open url image1

[32]  D. J. Forsyth, Distribution and production of Chironomus in eutrophic Lake Ngapouri. N. Z. J. Mar. Freshw. Res. 1986, 20, 47.
Distribution and production of Chironomus in eutrophic Lake Ngapouri.CrossRef | 1:CAS:528:DyaL28XmtFektb8%3D&md5=25fccf4febbdedd0ef6ca0b39a20d8e2CAS | open url image1

[33]  A. Hartland, I. J. Fairchild, J. R. Lead, A. Baker, Fluorescent properties of organic carbon in cave dripwaters: effects of filtration, temperature and pH. Sci. Total Environ. 2010, 408, 5940.
Fluorescent properties of organic carbon in cave dripwaters: effects of filtration, temperature and pH.CrossRef | 1:CAS:528:DC%2BC3cXhtlaqtr3N&md5=252adade2106d6d58d5e6be00ff4f892CAS | 20858563PubMed | open url image1

[34]  American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), Standard Methods for the Examination of Water & Wastewater 2012 (AWWA: Washington, DC, USA).

[35]  D. L. Parkhurst, C. A. J. Appelo, User’s guide to PHREEQC (Version 2) – a computer program for speciation, reaction-path, 1D-transport, and inverse geochemical calculations. USGS Water Resour. Inv. Rep. 99-4259 1999 (Reston, MA, USA).

[36]  D. A. Dzombak, F. M. M. Morel, Surface Complexation Modeling: Hydrous Ferric Oxide 1990 (Wiley-Interscience: New York).

[37]  J. W. Tonkin, L. S. Balistrieri, J. W. Murray, Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Appl. Geochem. 2004, 19, 29.
Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model.CrossRef | 1:CAS:528:DC%2BD3sXovVWgsLY%3D&md5=51aebcfaa2856121af3967d7f38bb19eCAS | open url image1

[38]  A. K. Karamalidis, D. A. Dzombak, Surface Complexation Modeling: Gibbsite 2010 (Wiley: Hoboken, NJ, USA).

[39]  H. Haider, W. Ali, S. Haydar, Evaluation of various relationships of reaeration rate coefficient for modeling dissolved oxygen in a river with extreme flow variations in Pakistan. Hydrol. Processes 2013, 27, 3949.
Evaluation of various relationships of reaeration rate coefficient for modeling dissolved oxygen in a river with extreme flow variations in Pakistan.CrossRef | 1:CAS:528:DC%2BC3sXhvFejtrnN&md5=505e4d3d52ba6633fce81e53aef802b1CAS | open url image1

[40]  W. P. Isaacs, A. F. Gaudy, Atmospheric oxygenation in a simulated stream. J. Sanit. Engrg. Div. 1968, 94, 319. open url image1

[41]  P. C. Singer, W. Stumm, Acidic mine drainage: the rate-determining step. Science 1970, 167, 1121.
Acidic mine drainage: the rate-determining step.CrossRef | 1:CAS:528:DyaE3cXot1Olsg%3D%3D&md5=5e41ca7a10ff8b19b82c76280d014dbfCAS | 17829406PubMed | open url image1

[42]  E. R. Sholkovitz, D. Copland, The chemistry of suspended matter in Esthwaite Water, a biologically productive lake with seasonally anoxic hypolimnion. Geochim. Cosmochim. Acta 1982, 46, 393.
The chemistry of suspended matter in Esthwaite Water, a biologically productive lake with seasonally anoxic hypolimnion.CrossRef | 1:CAS:528:DyaL38XksVertr8%3D&md5=377dc91968b1ce5d6d2d3478e4973c00CAS | open url image1

[43]  J. Hamilton-Taylor, W. Davison, Redox-driven cycling of trace elements in lakes, in Physics and Chemistry of Lakes, 2nd edn (Eds A. Lerman, D. Imboden, J. Gat) 1995, pp. 217–263 (Springer: Berlin).

[44]  R. Jakobsen, D. Postma, Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark. Geochim. Cosmochim. Acta 1999, 63, 137.
Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark.CrossRef | 1:CAS:528:DyaK1MXjtFGktbg%3D&md5=9ad9c9816ec5a9dc35968e36ac1329aaCAS | open url image1

[45]  D. Postma, R. Jakobsen, Redox zonation: equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim. Cosmochim. Acta 1996, 60, 3169.
Redox zonation: equilibrium constraints on the Fe(III)/SO4-reduction interface.CrossRef | open url image1

[46]  C. A. J. Appelo, D. Postma, Geochemistry, Groundwater and Pollution 2005 (CRC Press: Amsterdam).

[47]  D. Fortin, G. G. Leppard, A. Tessier, Characteristics of lacustrine diagenetic iron oxyhydroxides. Geochim. Cosmochim. Acta 1993, 57, 4391.
Characteristics of lacustrine diagenetic iron oxyhydroxides.CrossRef | 1:CAS:528:DyaK2cXlvV2ktA%3D%3D&md5=cbaf14d515f9df88d1fb5316b3d18dc3CAS | open url image1

[48]  J. P. Gustafsson, D. G. Lumsdon, M. Simonsson, Aluminium solubility characteristics of spodic B horizons containing imogolite type materials. Clay Miner. 1998, 33, 77.
Aluminium solubility characteristics of spodic B horizons containing imogolite type materials.CrossRef | 1:CAS:528:DyaK1cXjtVWrtr4%3D&md5=ff2d6c70cbdae2a6a21ed8a9a0ac79fbCAS | open url image1

[49]  J. P. Gustafsson, P. Bhattacharya, E. Karltun, Mineralogy of poorly crystalline aluminium phases in the B horizon of Podzols in southern Sweden. Appl. Geochem. 1999, 14, 707.
Mineralogy of poorly crystalline aluminium phases in the B horizon of Podzols in southern Sweden.CrossRef | 1:CAS:528:DyaK1MXktVCjsb8%3D&md5=06357a2bb8ecb325ea272b0b8714428eCAS | open url image1

[50]  D. Postma, S. Jessen, N. T. M. Hue, M. T. Duc, C. B. Koch, P. H. Viet, P. Q. Nhan, F. Larsen, Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam. Geochim. Cosmochim. Acta 2010, 74, 3367.
Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam.CrossRef | 1:CAS:528:DC%2BC3cXmtVCqt7k%3D&md5=88f18ed7f9d050a5ff5850f3bfc699aeCAS | open url image1

[51]  S. Dixit, J. G. Hering, Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182.
Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility.CrossRef | 1:CAS:528:DC%2BD3sXmtFOltr8%3D&md5=4ca7a5c9e1a8eb297a086a19b311a092CAS | 14524451PubMed | open url image1

[52]  Y. Cui, L. Weng, Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling. Environ. Sci. Technol. 2013, 47, 7269.
| 1:CAS:528:DC%2BC3sXptFeht7o%3D&md5=e13579cea043b062078cb52e19c684cdCAS | 23751067PubMed | open url image1

[53]  A. Ghosh, S. Chakrabarti, U. C. Ghosh, Fixed-bed column performance of Mn-incorporated iron(III) oxide nanoparticle agglomerates on As(III) removal from the spiked groundwater in lab bench scale. Chem. Eng. J. 2014, 248, 18.
Fixed-bed column performance of Mn-incorporated iron(III) oxide nanoparticle agglomerates on As(III) removal from the spiked groundwater in lab bench scale.CrossRef | 1:CAS:528:DC%2BC2cXotFWmtb0%3D&md5=a4ba38322347d2c02ab52c71db7c7853CAS | open url image1

[54]  V. Puccia, C. Luengo, M. Avena, Phosphate desorption kinetics from goethite as induced by arsenate. Colloids Surf. A Physicochem. Eng. Asp. 2009, 348, 221.
Phosphate desorption kinetics from goethite as induced by arsenate.CrossRef | 1:CAS:528:DC%2BD1MXhtV2iurfE&md5=8dd7244a6e592e03b3cac4d16474cf87CAS | open url image1

[55]  A. Hartland, J. R. Lead, V. I. Slaveykova, D. O’Carroll, E. Valsami-Jones, The environmental significance of natural nanoparticles. Nature Educ. Knowl. 2013, 4, 7. open url image1

[56]  G. A. Parks, The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 1965, 65, 177.
The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems.CrossRef | 1:CAS:528:DyaF2MXntVWlsw%3D%3D&md5=c62f3c8b1c105128d2f8d2688cfcd45dCAS | open url image1

[57]  C. Su, J. B. Harsh, P. M. Bertsch, Sodium and chloride sorption by imogolite and allophanes. Clays Clay Miner. 1992, 40, 280.
Sodium and chloride sorption by imogolite and allophanes.CrossRef | 1:CAS:528:DyaK38XmsFCqu7o%3D&md5=4ba213ed1079b7b881265b2fe1ee99beCAS | open url image1



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (310 KB) Export Citation Cited By (2)