Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA

Michelle L. Hladik A C and Dana W. Kolpin B

A US Geological Survey, California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA 95819, USA.

B US Geological Survey, Iowa Water Science Center, 400 S. Clinton Street, Iowa City, IA 52240, USA; dwkolpin@usgs.gov

C Corresponding author. Email address: mhladik@usgs.gov

Environmental Chemistry 13(1) 12-20 http://dx.doi.org/10.1071/EN15061
Submitted: 21 March 2015  Accepted: 15 April 2015   Published: 18 August 2015

Environmental context. Neonicotinoids are under increased scrutiny because they have been implicated in pollinator declines and, more recently, as potential aquatic toxicants. Nevertheless, there is currently little information on concentrations of multiple neonicotinoids in surface water. This paper presents a summary of concentrations of six neonicotinoids in streams from across the United States in both urban and agricultural areas. These environmental data are important in determining the potential risk of neonicotinoids to non-target aquatic and terrestrial organisms.

Abstract. To better understand the fate and transport of neonicotinoid insecticides, water samples were collected from streams across the United States. In a nationwide study, at least one neonicotinoid was detected in 53 % of the samples collected, with imidacloprid detected most frequently (37 %), followed by clothianidin (24 %), thiamethoxam (21 %), dinotefuran (13 %), acetamiprid (3 %) and thiacloprid (0 %). Clothianidin and thiamethoxam concentrations were positively related to the percentage of the land use in cultivated crop production and imidacloprid concentrations were positively related to the percentage of urban area within the basin. Additional sampling was also conducted in targeted research areas to complement these national-scale results, including determining: (1) neonicotinoid concentrations during elevated flow conditions in an intensely agricultural region; (2) temporal patterns of neonicotinoids in heavily urbanised basins; (3) neonicotinoid concentrations in agricultural basins in a nationally important ecosystem; and (4) in-stream transport of neonicotinoids near a wastewater treatment plant. Across all study areas, at least one neonicotinoid was detected in 63 % of the 48 streams sampled.


References

[1]  L. W. Pisa, V. Amaral-Rogers, L. P. Belzunces, J. M. Bonmatin, C. A. Downs, D. Goulson, D. P. Kreutzweiser, C. Krupke, M. Liess, M. McField, C. A. Morrissey, D. A. Noome, J. Settele, N. Simon-Delso, J. D. Stark, J. P. Van der Sluijs, H. Van Dyck, M. Wiemers, Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 2015, 22, 68.
Effects of neonicotinoids and fipronil on non-target invertebrates.CrossRef | 1:CAS:528:DC%2BC2cXhsFOmu7nO&md5=ee19f3fec685c528ce0ace8a9c8440e7CAS | open url image1

[2]  C. A. Morrissey, P. Mineau, J. H. Devries, F. Sánchez-Bayo, M. Liess, M. C. Cavallaro, K. Liber, Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ. Int. 2015, 74, 291.
Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review.CrossRef | 1:CAS:528:DC%2BC2cXhvFGrsrrF&md5=1887c68ccb87980bee5aec903209cc5aCAS | 25454246PubMed | open url image1

[3]  T. C. Van Dijk, M. A. Van Staalduinen, J. P. Van der Sluijs, Macro-invertebrate decline in surface water polluted with imidacloprid. PLoS One 2013, 8, e62374.
Macro-invertebrate decline in surface water polluted with imidacloprid.CrossRef | 1:CAS:528:DC%2BC3sXnsFajtrw%3D&md5=d0d1960fa44de4e86fef5893b6e404a0CAS | 23650513PubMed | open url image1

[4]  C. A. Hallmann, R. P. B. Froppen, C. A. M. van Turnhout, H. de Kroon, E. Jongejans, Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 2014, 511, 341.
Declines in insectivorous birds are associated with high neonicotinoid concentrations.CrossRef | 1:CAS:528:DC%2BC2cXhtFOjtrrL&md5=2c7263c5c1ef86967d888055732f6a87CAS | 25030173PubMed | open url image1

[5]  D. Gibbons, C. Morrissey, P. Mineau, A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ. Sci. Pollut. Res. 2015, 22, 103.
A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife.CrossRef | 1:CAS:528:DC%2BC2cXhtVGqsLzL&md5=d98ae51475ea425b6b8c4191529947a9CAS | open url image1

[6]  National Water-Quality Assessment (NAWQA) Program Annual Pesticides Use Maps 2015 (US Geological Survey). Available at https://water.usgs.gov/nawqa/pnsp/usage/maps/ [Verified 10 February 2015].

[7]  M. Douglas, J. F. Tooker, Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops. Environ. Sci. Technol. 2015, 49, 5088.
Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops.CrossRef | 1:CAS:528:DC%2BC2MXkvVOksbs%3D&md5=0176eb1e489211f02a45060f74948dccCAS | 25793443PubMed | open url image1

[8]  P. Jeschke, R. Nauen, M. Schindler, A. Elbert, Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 2011, 59, 2897.
Overview of the status and global strategy for neonicotinoids.CrossRef | 1:CAS:528:DC%2BC3cXns1Clsrk%3D&md5=fca6ae015a647ec8e7aa914a969c4ae3CAS | 20565065PubMed | open url image1

[9]  N. Simon-Delso, V. Amaral-Rogers, L. P. Belzunces, J. M. Bonmatin, M. Chagnon, C. Downs, L. Furlan, D. W. Gibbons, C. Giorio, V. Girolami, D. Goulson, D. P. Kreutzweiser, C. H. Krupke, M. Liess, E. Long, M. McField, P. Mineau, E. A. D. Mitchell, C. A. Morrissey, D. A. Noome, L. Pisa, J. Settele, J. D. Stark, A. Tapparo, H. Van Dyck, J. Van Praagh, J. P. Van der Sluijs, P. R. Whitehorn, M. Wiemers, Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5.
Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites.CrossRef | 1:CAS:528:DC%2BC2cXhsFOlur%2FO&md5=43b5665b8e0440bbcc1022f722df76b6CAS | open url image1

[10]  Pesticide properties database, April 2013 version 2013 (Agriculture and Environment Research Unit (AERU), Science and Technology Research Institute, University of Hertfordshire: Hatfield, UK). Available at http://sitem.herts.ac.uk/aeru/footprint/en/index.htm [Verified 20 March 2015].

[11]  M. L. Hladik, D. W. Kolpin, K. M. Kuivila, Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean-producing region, USA. Environ. Pollut. 2014, 193, 189.
Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean-producing region, USA.CrossRef | 1:CAS:528:DC%2BC2cXht1ensbnJ&md5=5d6200113942381658c9db7a1afc8cc1CAS | 25042208PubMed | open url image1

[12]  J. C. Anderson, C. Dubetz, V. P. Palace, Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci. Total Environ. 2015, 505, 409.
Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects.CrossRef | 1:CAS:528:DC%2BC2cXhslehtLjP&md5=b40ab35a6c144f52ceacc1cd8e9357b7CAS | 25461043PubMed | open url image1

[13]  D. Goulson, An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977.
An overview of the environmental risks posed by neonicotinoid insecticides.CrossRef | open url image1

[14]  T. A. Anderson, C. J. Salice, R. A. Erickson, S. T. McMurry, S. B. Cox, L. M. Smith, Effects of land use and precipitation on pesticides and water quality in playa lakes of the Southern High Plains. Chemosphere 2013, 92, 84.
Effects of land use and precipitation on pesticides and water quality in playa lakes of the Southern High Plains.CrossRef | 1:CAS:528:DC%2BC3sXltVCjsro%3D&md5=c637ae02d0d2149a9a56b1265406f299CAS | 23541358PubMed | open url image1

[15]  A. R. Main, J. V. Headley, K. M. Peru, N. L. Michel, A. L. Cessna, C. A. Morrissey, Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada’s Prairie Pothole Region. PLoS One 2014, 9, e92821.
Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada’s Prairie Pothole Region.CrossRef | 24671127PubMed | open url image1

[16]  K. L. Smalling, R. Reeves, E. Muths, M. Vandever, W. A. Battaglin, M. L. Hladik, C. L. Pierce, Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture. Sci. Total Environ. 2015, 502, 80.
Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture.CrossRef | 1:CAS:528:DC%2BC2cXhsFGlurzN&md5=96b7a16c50e9589aab3f4be06faefb3aCAS | 25244036PubMed | open url image1

[17]  F. Sánchez-Bayo, R. V. Hyne, Detection and analysis of neonicotinoids in river waters – development of a passive sampler for three commonly used insecticides. Chemosphere 2014, 99, 143.
Detection and analysis of neonicotinoids in river waters – development of a passive sampler for three commonly used insecticides.CrossRef | 24296028PubMed | open url image1

[18]  A. Schaafsma, V. Limay-Rios, T. Baute, J. Smith, Y. Xue, Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in south-western Ontario. PLoS One 2015, 10, e0118139.
Neonicotinoid insecticide residues in surface water and soil associated with commercial maize (corn) fields in south-western Ontario.CrossRef | 25710560PubMed | open url image1

[19]  M. L. Hladik, D. L. Calhoun, Analysis of the herbicide diuron, three diuron degradates, and six neonicotinoid insecticides in water – method details and application to two Georgia streams. Scientific Investigations Report 2012–5206 2012 (US Geological Survey: Reston, VA, USA).

[20]  H. T. Buxton, T. J. Reilly, K. M. Kuivila, D. W. Kolpin, D. L. Villeneuve, M. A. Mills, Chemical mixtures and environmental effects: a pilot study to assess ecological exposure and effects in streams. Open-file Report 2015-1113 2015 (US Geological Survey: Reston, VA, USA).

[21]  The National Field Manual for the Collection of Water Quality Data, Collection of Water Samples (ver 2.0). Techniques of Water Resources Investigations, Book 9, Ch. A4 2006 (US Geological Survey). Available at http://pubs.water.usgs.gov/twri9A4/ [Verified 20 March 2015].

[22]  V. S. Blazer, L. R. Iwanowicz, H. Henderson, P. M. Mazik, J. A. Jenkins, D. A. Alvarez, J. A. Young, Reproductive endocrine disruption in smallmouth bass (Micropterus dolomieu) in the Potomac River Basin: spatial and temporal comparisons of biological effects. Environ. Monit. Assess. 2012, 184, 4309.
Reproductive endocrine disruption in smallmouth bass (Micropterus dolomieu) in the Potomac River Basin: spatial and temporal comparisons of biological effects.CrossRef | 1:CAS:528:DC%2BC38XoslSgu7c%3D&md5=48de2e75857fbfa768a9163b880668b8CAS | 21814719PubMed | open url image1

[23]  V. S. Blazer, A. E. Pinkney, J. A. Jenkins, L. R. Iwanowicz, S. Minkkinen, R. O. Draugelis-Date, J. H. Uphoff, Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay. Sci. Total Environ. 2013, 447, 198.
Reproductive health of yellow perch Perca flavescens in selected tributaries of the Chesapeake Bay.CrossRef | 1:CAS:528:DC%2BC3sXjvFejtrc%3D&md5=632e35ab95b7e70a912e1b36f2d5f562CAS | 23384644PubMed | open url image1

[24]  V. S. Blazer, D. D. Iwanowicz, H. L. Walsh, A. J. Sperry, L. R. Iwanowicz, D. A. Alvarez, R. A. Brightbill, G. Smith, W. T. Foreman, R. Manning, Reproductive health indicators of fishes from Pennsylvania watersheds: association with chemicals of emerging concern. Environ. Monit. Assess. 2014, 186, 6471.
Reproductive health indicators of fishes from Pennsylvania watersheds: association with chemicals of emerging concern.CrossRef | 1:CAS:528:DC%2BC2cXhtVGqsrvM&md5=c8a6a10d0197489b6967d37521b4cbebCAS | 24934131PubMed | open url image1

[25]  L. B. Barber, S. H. Keefe, D. W. Kolpin, D. J. Schnoebelen, J. L. Flynn, G. K. Brown, E. T. Furlong, J. L. Gray, S. T. Glassmeyer, M. T. Meyer, M. W. Sandstrom, H. E. Taylor, S. D. Zaugg, Lagrangian sampling of wastewater treatment plant discharges into Boulder Creek, Colorado and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005 – hydrological and water-quality data. Open-File Report 2011–1054 2011 (US Geological Survey: Reston, VA, USA).

[26]  L. B. Barber, S. H. Keefe, G. K. Brown, E. T. Furlong, J. L. Gray, D. W. Kolpin, M. T. Meyer, M. W. Sandstrom, S. D. Zaugg, Persistence and potential effects of complex organic contaminant mixtures in wastewater-impacted streams. Environ. Sci. Technol. 2013, 47, 2177.
Persistence and potential effects of complex organic contaminant mixtures in wastewater-impacted streams.CrossRef | 1:CAS:528:DC%2BC3sXit1yhs7g%3D&md5=62935126e7f308fce00f37f16da8c25fCAS | 23398602PubMed | open url image1

[27]  P. M. Bradley, L. B. Barber, J. W. Duris, W. T. Foreman, E. T. Furlong, L. E. Hubbard, K. J. Hutchinson, S. H. Keefe, D. W. Kolpin, Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream. Environ. Pollut. 2014, 193, 173.
Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream.CrossRef | 1:CAS:528:DC%2BC2cXht1ensbnK&md5=32ff87f0da9dc94b6727168527216d6dCAS | 25038376PubMed | open url image1

[28]  R. Nauen, U. Ebbinghaus-Kintscher, V. L. Salgado, M. Kaussmann, Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol. 2003, 76, 55.
Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants.CrossRef | 1:CAS:528:DC%2BD3sXltl2hu7g%3D&md5=f8b1eb6b2820c852da06ec26178543b4CAS | open url image1


Full Text PDF (969.9 KB) Export Citation