Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Insights into natural organic matter and pesticide characterisation and distribution in the Rhone River

Danielle L. Slomberg A B , Patrick Ollivier C , Olivier Radakovitch A , Nicole Baran C , Nicole Sani-Kast D , Auguste Bruchet E , Martin Scheringer D F and Jérôme Labille A B G

A Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement (CEREGE), UM 34, Europôle de l’Arbois, BP 80, F-13545 Aix-en-Provence, France.

B International Consortium for the Environmental Implications of Nanotechnology (iCEINT).

C Bureau de Recherches Géologiques et Minières (BRGM), UMR 7327, BP 36009, F-45060, Orléans, France.

D Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology (ETH Zürich), Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland.

E Centre International de Recherche sur l’Eau et l’Environnement (CIRSEE)–Suez Environnement, 38 Rue du Président Wilson, F-78230, Le Pecq, France.

F Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, CZ-625 00 Brno, Czech Republic.

G Corresponding author. Email: labille@cerege.fr

Environmental Chemistry - http://dx.doi.org/10.1071/EN16038
Submitted: 18 February 2016  Accepted: 6 June 2016   Published online: 13 July 2016

Environmental context. Natural organic matter in surface waters is a transport vector for environmental pollutants with both its concentration and composition influencing pollutant fate. Characterisation of organic matter in surface waters, crucial to understanding pollutant transport, should also account for spatial variation along the water source. The present work characterises the natural organic matter in the Rhone River and describes the distributions of various pesticides and metabolites along the river.

Abstract. Thorough characterisation of natural organic matter (NOM) in natural surface waters remains vital for evaluating pollutant dynamics and interactions with NOM under realistic environmental conditions. Here, we present the characterisation of NOM and pesticide compositions for nine sampling sites over the length of the Rhone River, also evaluating the advantages and limitations of different analytical techniques to determine how they complement one another. Together with dissolved and particulate organic carbon analyses, the dissolved organic matter (DOM, <0.8 μm) or NOM (unfiltered organic matter) was characterised with gel permeation chromatography, the polarity rapid-assessment method, excitation–emission matrix fluorescence, and pyrolysis–gas chromatography–mass spectrometry to evaluate both composition and distribution. An additional objective was the determination of the NOM degradation state (i.e. constantly produced autochthonous or weakly degraded allochthonous species), an important factor in assessing potential NOM–pollutant interactions. The NOM compositions (i.e. proteins, polyhydroxy aromatics, polysaccharides, amino sugars) and proportions were similar between sites, but variations were observed in the relative proportions of autochthonous and allochthonous material from north to south. Anionic proteins and polyhydroxy aromatics in a molecular weight range of ~1000–1200 Da comprised the majority of the DOM. As a pollutant case study, five pesticides (glyphosate, metalochlor, chlortoluron, isoproturon, propyzamide) and some of their metabolites (aminomethylphosphonic acid, metolachlor ethanesulfonic acid and metolachlor oxanilic acid) were measured. Several exhibited trends with the NOM, particulate organic carbon and suspended particulate matter distributions in the Rhone waters, suggesting a significant influence on pesticide fate and transport in the river.


References

[1]  K. Wilkinson, J. Negre, J. Buffle, Coagulation of colloidal material in surface waters: the role of natural organic matter. J. Contam. Hydrol. 1997, 26, 229.
Coagulation of colloidal material in surface waters: the role of natural organic matter.CrossRef | 1:CAS:528:DyaK2sXkt1Smt74%3D&md5=ac4a8fc7534f85ee6f5e59da0cd617d2CAS | open url image1

[2]  R. Beckett, N. Le, The role or organic matter and ionic composition in determining the surface charge of suspended particles in natural waters. Colloids Surf. 1990, 44, 35.
The role or organic matter and ionic composition in determining the surface charge of suspended particles in natural waters.CrossRef | 1:CAS:528:DyaK3cXit1artb8%3D&md5=bf8f371acb1b9aafa3080d35017ce200CAS | open url image1

[3]  M. Shafer, J. Overdier, J. Hurley, D. Armstrong, D. Webb, The influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA). Chem. Geol. 1997, 136, 71.
The influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA).CrossRef | 1:CAS:528:DyaK2sXhslOmurg%3D&md5=b875340c35554c3fbbd5cf1b3e478681CAS | open url image1

[4]  N. Warren, I. Allan, J. Carter, W. House, A. Parker, Pesticides and other micro-organic contaminants in freshwater sedimentary environments – a review. Appl. Geochem. 2003, 18, 159.
Pesticides and other micro-organic contaminants in freshwater sedimentary environments – a review.CrossRef | 1:CAS:528:DC%2BD38XovFehtLc%3D&md5=be674883d5defc87c806196399f97513CAS | open url image1

[5]  A. Kan, M. Tomson, Ground water transport of hydrophobic organic compounds in the presence of dissolved organic matter. Environ. Toxicol. Chem. 1990, 9, 253.
Ground water transport of hydrophobic organic compounds in the presence of dissolved organic matter.CrossRef | 1:CAS:528:DyaK3cXitVCgsr0%3D&md5=9f611f1b90863c4bc8b160dc76ee428cCAS | open url image1

[6]  C. Chiou, R. Malcolm, T. Brinton, D. Kile, Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids. Environ. Sci. Technol. 1986, 20, 502.
Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic acids.CrossRef | 1:CAS:528:DyaL28XhsFGntb8%3D&md5=3bf4d1f7aadcbdeb7ca11046158609afCAS | 19994935PubMed | open url image1

[7]  A. Philippe, G. Schaumann, Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ. Sci. Technol. 2014, 48, 8946.
Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review.CrossRef | 1:CAS:528:DC%2BC2cXht1Gns7fN&md5=45badf6900c179983d01da39ab0d915cCAS | 25082801PubMed | open url image1

[8]  J. Labille, F. Thomas, M. Milas, C. Vanhaverbeke, Flocculation of colloidal clay by bacterial polysaccharides: effect of macromolecule charge and structure. J. Colloid Interface Sci. 2005, 284, 149.
Flocculation of colloidal clay by bacterial polysaccharides: effect of macromolecule charge and structure.CrossRef | 1:CAS:528:DC%2BD2MXhvFygs74%3D&md5=84dfab9d3f96dd85e92b570141c07ad9CAS | 15752796PubMed | open url image1

[9]  A. Torrents, S. Jayasundera, The sorption of non-ionic pesticides onto clays and the influence of natural organic carbon. Chemosphere 1997, 35, 1549.
The sorption of non-ionic pesticides onto clays and the influence of natural organic carbon.CrossRef | 1:CAS:528:DyaK2sXmt1GnsL8%3D&md5=8d02b2dce426e2e4c3ffe6b4de7d6a17CAS | open url image1

[10]  J. Labille, J. Feng, C. Botta, D. Borschneck, M. Sammut, M. Cabie, M. Auffan, J. Rose, J.-Y. Bottero, Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment. Environ. Pollut. 2010, 158, 3482.
Aging of TiO2 nanocomposites used in sunscreen. Dispersion and fate of the degradation products in aqueous environment.CrossRef | 1:CAS:528:DC%2BC3cXht1Gjs7nO&md5=3f3905c9f7732a91bb060ae2f7c4d21bCAS | 20346555PubMed | open url image1

[11]  J. Quik, M. Stuart, M. Wouterse, W. Peijnenburg, A. Hendriks, D. van de Meent, Natural colloids are the dominant factor in the sedimentation of nanoparticles. Environ. Toxicol. Chem. 2012, 31, 1019.
Natural colloids are the dominant factor in the sedimentation of nanoparticles.CrossRef | 1:CAS:528:DC%2BC38XntFyit7Y%3D&md5=148d2755537d31a19c7bab3f29aa746dCAS | 22447393PubMed | open url image1

[12]  D. Zhou, Z. Ji, X. Jiang, D. Dunphy, J. Brinker, A. Keller, Influence of material properties on TiO2 nanoparticle agglomeration. PLoS One 2013, 8, e81239.
Influence of material properties on TiO2 nanoparticle agglomeration.CrossRef | 24282573PubMed | open url image1

[13]  H. Wang, J. Qi, A. Keller, M. Zhu, F. Li, Effects of pH, ionic strength and humic acid on the removal of TiO2 nanoparticles from aqueous phase by coagulation. Colloids Surf. A Physicochem. Eng. Asp. 2014, 450, 161.
Effects of pH, ionic strength and humic acid on the removal of TiO2 nanoparticles from aqueous phase by coagulation.CrossRef | 1:CAS:528:DC%2BC2cXmtVyiurw%3D&md5=1bf5c6be7bbf1892987ff9a5fb756732CAS | open url image1

[14]  A. Keller, H. Wang, D. Zhou, H. Lenihan, G. Cherr, B. Cardinale, R. Miller, Z. Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 2010, 44, 1962.
Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices.CrossRef | 1:CAS:528:DC%2BC3cXhvFWgtLk%3D&md5=8a2de853abf443978462d0889b9fc6e4CAS | 20151631PubMed | open url image1

[15]  A. Adeleye, J. Conway, T. Perez, P. Rutten, A. Keller, Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ. Sci. Technol. 2014, 48, 12561.
Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles.CrossRef | 1:CAS:528:DC%2BC2cXhslahsLnE&md5=63e27c4bee4ffb8a3a55361cc237927aCAS | 25295836PubMed | open url image1

[16]  P. Marmonier, D. Fontvieille, J. Gibert, V. Vanek, Distribution of dissolved organic carbon and bacteria at the interface between the Rhône River and its alluvial aquifer. J. N. Am. Benthol. Soc. 1995, 14, 382.
Distribution of dissolved organic carbon and bacteria at the interface between the Rhône River and its alluvial aquifer.CrossRef | open url image1

[17]  A. Puigbo, F. Gadel, J. Alcaniz, L. Comellas, PY-GC-MS analysis of organic matter in suspended material and deposits of the submarine delta of the Rhone River (France). Sci. Total Environ. 1989, 81–82, 71.
PY-GC-MS analysis of organic matter in suspended material and deposits of the submarine delta of the Rhone River (France).CrossRef | open url image1

[18]  M. Sicre, S. Peulve, A. Saliot, J. de Leeuw, M. Baas, Molecular characterization of the organic fraction of suspended matter in the surface waters and bottom nepheloid layer of the Rhone delta using analytical pyrolysis. Org. Geochem. 1994, 21, 11.
Molecular characterization of the organic fraction of suspended matter in the surface waters and bottom nepheloid layer of the Rhone delta using analytical pyrolysis.CrossRef | 1:CAS:528:DyaK2cXjtVKlu7s%3D&md5=982b35c40d6d7f05ce942a083581cea9CAS | open url image1

[19]  R. Sleighter, P. Hatcher, Molecular characterization of dissolved organic matter (DOM) along a river-to-ocean transect of the lower Chesapeake Bay by ultrahigh-resolution electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. Mar. Chem. 2008, 110, 140.
Molecular characterization of dissolved organic matter (DOM) along a river-to-ocean transect of the lower Chesapeake Bay by ultrahigh-resolution electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry.CrossRef | 1:CAS:528:DC%2BD1cXmsFahsrw%3D&md5=c6ddef6331467f76be3f54fb99e7f7c0CAS | open url image1

[20]  M. Goñi, M. Teixeira, D. Perkey, Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuar. Coast. Shelf Sci. 2003, 57, 1023.
Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA).CrossRef | open url image1

[21]  B. Martin-Mousset, J. Croue, E. Lefebvre, B. Legube, Distribution and characterization of dissolved organic matter of surface waters. Water Res. 1997, 3, 541.
Distribution and characterization of dissolved organic matter of surface waters.CrossRef | open url image1

[22]  M. Erlandsson, I. Buffam, J. Fölster, H. Laudon, J. Temnerud, G. Weyhenmeyer, K. Bishop, Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Glob. Change Biol. 2008, 14, 1191.
Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate.CrossRef | open url image1

[23]  X. Cao, G. Aiken, R. Spencer, K. Butler, J. Mao, K. Schmidt-Rohr, Novel insights from NMR spectroscopy into seasonal changes in the composition of dissolved organic matter exported to the Bering Sea by the Yukon River. Geochim. Cosmochim. Acta 2016, 181, 72.
Novel insights from NMR spectroscopy into seasonal changes in the composition of dissolved organic matter exported to the Bering Sea by the Yukon River.CrossRef | 1:CAS:528:DC%2BC28Xjs1ynt7k%3D&md5=5805c6dee8b746db68a5276cc73acadaCAS | open url image1

[24]  R. Spencer, G. Aiken, K. Wickland, R. Striegl, P. Hernes, Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Global Biogeochem. Cycles 2008, 22, GB4002.
Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska.CrossRef | open url image1

[25]  A. Bruchet, C. Rousseau, J. Mallevialle, Pyrolysis–GC-MS for investigating high-molecular-weight THM precursors and other refractory organics. J. Am. Water Works Assoc. 1990, 82, 66.
| 1:CAS:528:DyaK3MXhtVymtL4%3D&md5=263366a2789adcc55f2391e20487c375CAS | open url image1

[26]  R. Spencer, A. Stubbins, P. Hernes, A. Baker, K. Mopper, A. Aufdenkampe, R. Dyda, V. Mwamba, A. Mangangu, J. Wabakanghanzi, J. Six, Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. J. Geophys. Res. 2009, 114, G03010.
Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River.CrossRef | open url image1

[27]  A. Baker, R. Spencer, Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci. Total Environ. 2004, 333, 217.
Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy.CrossRef | 1:CAS:528:DC%2BD2cXnsFSgsbk%3D&md5=c79b44426cb81de081f0b5d810a4bda7CAS | 15364531PubMed | open url image1

[28]  J. Lobbes, H. Fitznar, G. Kattner, Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochim. Cosmochim. Acta 2000, 64, 2973.
Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean.CrossRef | 1:CAS:528:DC%2BD3cXmtVant70%3D&md5=1a87d4c1a4ef10444929bac10e39d5feCAS | open url image1

[29]  N. Her, G. Amy, D. McKnight, J. Sohn, Y. Yoon, Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. Water Res. 2003, 37, 4295.
Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection.CrossRef | 1:CAS:528:DC%2BD3sXms1Smtrw%3D&md5=79bb9ab5c65ec027667b60f2a3fba935CAS | 12946913PubMed | open url image1

[30]  M. Harmelin-Vivien, J. Dierking, D. Bănaru, M. Fontaine, D. Arlhac, Seasonal variation in stable C and N isotope ratios of the Rhone River inputs to the Mediterranean Sea (2004–2005). Biogeochemistry 2010, 100, 139.
Seasonal variation in stable C and N isotope ratios of the Rhone River inputs to the Mediterranean Sea (2004–2005).CrossRef | 1:CAS:528:DC%2BC3cXhtV2hu7zF&md5=164701c53b6deadf3384d52b20dfe125CAS | open url image1

[31]  G. Arnaud-Fassetta, River channel changes in the Rhone Delta (France) since the end of the Little Ice Age: geomorphological adjustment to hydroclimatic change and natural resource management. Catena 2003, 51, 141.
River channel changes in the Rhone Delta (France) since the end of the Little Ice Age: geomorphological adjustment to hydroclimatic change and natural resource management.CrossRef | open url image1

[32]  D. Slomberg, P. Ollivier, O. Radakovitch, N. Baran, N. Sani-Kast, H. Miche, D. Borschneck, O. Grauby, A. Bruchet, M. Scheringer, J. Labille, Characterisation of suspended particulate matter in the Rhone River: insights into analogue selection. Environ. Chem 2016, in press.
Characterisation of suspended particulate matter in the Rhone River: insights into analogue selection.CrossRef | open url image1

[33]  J. Leenheer, J.-P. Croué, Peer reviewed: characterizing aquatic dissolved organic matter. Environ. Sci. Technol. 2003, 37, 18A.
Peer reviewed: characterizing aquatic dissolved organic matter.CrossRef | 1:CAS:528:DC%2BD3sXls1em&md5=fc2106b072d78ea85bad50b28de3ea95CAS | 12542280PubMed | open url image1

[34]  D. Asakawa, Y. Iimura, T. Kiyota, Y. Yanagi, N. Fujitake, Molecular size fractionation of soil humic acids using preparative high performance size-exclusion chromatography. J. Chromatogr. A 2011, 1218, 6448.
Molecular size fractionation of soil humic acids using preparative high performance size-exclusion chromatography.CrossRef | 1:CAS:528:DC%2BC3MXhtFSjtrfI&md5=6174fca834079b8f5b2706258f092540CAS | 21820122PubMed | open url image1

[35]  M. Philibert, S. Bush, F. Rosario-Ortiz, Advances in the characterization of the polarity of DOM under ambient water quality conditions using the Polarity Rapid Assessment Method. Water Sci. Technol.: Water Supply 2008, 8, 725.
| 1:CAS:528:DC%2BD1MXis1Wmur4%3D&md5=abfb760240703de50979ca3c12e670c3CAS | open url image1

[36]  F. Rosario-Ortiz, S. Snyder, I. Suffet, Characterization of dissolved organic matter in drinking water sources impacted by multiple tributaries. Water Res. 2007, 41, 4115.
Characterization of dissolved organic matter in drinking water sources impacted by multiple tributaries.CrossRef | 1:CAS:528:DC%2BD2sXhtVKru7rN&md5=624837c47b93b2527e925ace1d051734CAS | 17659316PubMed | open url image1

[37]  A. Christy, A. Bruchet, D. Rybacki, Characterization of natural organic matter by pyrolysis/GC-MS. Environ. Int. 1999, 25, 181.
Characterization of natural organic matter by pyrolysis/GC-MS.CrossRef | 1:CAS:528:DyaK1MXjsFyisrk%3D&md5=4e380094aed346dadb90c4087ad23278CAS | open url image1

[38]  L. Amalric, N. Baran, C. Coureau, L. Maingot, F. Buron, S. Routier, Analytical developments for 47 pesticides: first identification of neutral chloroacetanilide derivatives in French groundwater. Int. J. Environ. Anal. Chem. 2013, 93, 1660.
Analytical developments for 47 pesticides: first identification of neutral chloroacetanilide derivatives in French groundwater.CrossRef | 1:CAS:528:DC%2BC3sXhslygtbrL&md5=ff0264061fbf86e5cd6496678fde0438CAS | open url image1

[39]  J. Rostan, B. Cellot, On the use of UV spectrophotometry to assess dissolved organic carbon origin variations in the Upper Rhône River. Aquat. Sci. 1995, 57, 70.
On the use of UV spectrophotometry to assess dissolved organic carbon origin variations in the Upper Rhône River.CrossRef | open url image1

[40]  R. Sempéré, B. Charrière, F. Van Wambeke, G. Cauwet, Carbon inputs of the Rhône River to the Mediterranean Sea: biogeochemical implications. Global Biogeochem. Cycles 2000, 14, 669.
Carbon inputs of the Rhône River to the Mediterranean Sea: biogeochemical implications.CrossRef | open url image1

[41]  T. Battin, T. L. Kaplan, S. Findlay, C. Hopkinson, E. Marti, A. Packman, J. Newbold, F. Sabater, Biophysical controls on organic carbon fluxes in fluvial networks. Nat. Geosci. 2008, 1, 95.
Biophysical controls on organic carbon fluxes in fluvial networks.CrossRef | 1:CAS:528:DC%2BD1cXjsVGjs7k%3D&md5=86cb42a2f0bd7f3e9c5f37c1e1c833f9CAS | open url image1

[42]  N. Ward, R. Keil, P. Medeiros, D. Brito, A. Cunha, T. Dittmar, P. Yager, A. Krusche, J. Richey, Degradation of terrestrially derived macromolecules in the Amazon River. Nat. Geosci. 2013, 6, 530.
Degradation of terrestrially derived macromolecules in the Amazon River.CrossRef | 1:CAS:528:DC%2BC3sXnvVSjtbk%3D&md5=2256dde6f29f63736d413de7ff102e8eCAS | open url image1

[43]  J. Swietlik, E. Sikorska, Characterization of natural organic matter fractions by high-pressure size-exclusion chromatography, specific UV absorbance and total luminescence spectroscopy. Pol. J. Environ. Stud. 2006, 15, 145.
| 1:CAS:528:DC%2BD28Xis1Ort7s%3D&md5=9787c8c9492e9570940c9d7d0db8b3d7CAS | open url image1

[44]  J. Weishaar, G. Aiken, B. Bergamaschi, M. Fram, R. Fujii, K. Mopper, Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702.
Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon.CrossRef | 1:CAS:528:DC%2BD3sXotFCgtLY%3D&md5=501b0c4d8fea576b61c2c09f1e792b32CAS | 14594381PubMed | open url image1

[45]  Base de Données, Observatoire des Sédiments du Rhône 2013 (Groupe de Recherche Rhône–Alpes sur les Infrastructures et l’Eau: France). Available at www.graie.org/osr/spip.php?rubrique44 [Verified 4 December 2013].

[46]  N. Sani-Kast, M. Scheringer, D. Slomberg, J. Labille, A. Praetorius, P. Ollivier, K. Hungerbühler, Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles. Sci. Total Environ. 2015, 535, 150.
Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.CrossRef | 1:CAS:528:DC%2BC2MXhvFOmtg%3D%3D&md5=f0a19ddb265fdf2c756cdc586abafa40CAS | 25636351PubMed | open url image1

[47]  L. Cotrim da Cunha, L. Serve, F. Gadel, J.-L. Blazi, Characterisation of riverine particulate organic matter by pyrolysis–gas chromatography–mass spectrometry. Sci. Total Environ. 2000, 256, 191.
Characterisation of riverine particulate organic matter by pyrolysis–gas chromatography–mass spectrometry.CrossRef | 1:CAS:528:DC%2BD3cXktV2rs78%3D&md5=d22d43ef8b074c2535625627070c0cd8CAS | open url image1

[48]  F. Gadel, B. Charrière, L. Serve, Chemical characterization of suspended particulate organic matter by pyrolysis–gas chromatography coupled with mass spectrometry and high-performance liquid chromatography in the bottom nepheloid layer of the Rhône Delta. Estuar. Coast. Shelf Sci. 1993, 37, 221.
Chemical characterization of suspended particulate organic matter by pyrolysis–gas chromatography coupled with mass spectrometry and high-performance liquid chromatography in the bottom nepheloid layer of the Rhône Delta.CrossRef | 1:CAS:528:DyaK2cXhvF2lurY%3D&md5=374caa4041c145d147b569444c24f519CAS | open url image1

[49]  W. Chen, P. Westerhoff, J. Leenheer, K. Booksh, Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701.
Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter.CrossRef | 1:CAS:528:DC%2BD3sXovFeisrc%3D&md5=94eaaa7927fffef6a8869a238cc48eacCAS | 14717183PubMed | open url image1

[50]  Y.-Y. Wei, Y. Liu, Y. Zhang, R.-H. Dai, X. Liu, J.-J. Wu, Q. Zhang, Influence of soluble microbial products (SMP) on wastewater disinfection byproducts: trihalomethanes and haloacetic acid species from the chlorination of SMP. Environ. Sci. Pollut. Res. 2011, 18, 46.
Influence of soluble microbial products (SMP) on wastewater disinfection byproducts: trihalomethanes and haloacetic acid species from the chlorination of SMP.CrossRef | 1:CAS:528:DC%2BC3MXisVOnsw%3D%3D&md5=4088ecde2d66afb6db1468ce065453f7CAS | open url image1

[51]  L. Taghavi, G. Merlina, J-L. Probst, The role of storm flows in concentration of pesticides associated with particulate and dissolved fractions as a threat to aquatic ecosystems – case study: the agricultural watershed of Save River (south-west of France). Knowl. Managt. Aquat. Ecosyst. 2011, 400, 06.
The role of storm flows in concentration of pesticides associated with particulate and dissolved fractions as a threat to aquatic ecosystems – case study: the agricultural watershed of Save River (south-west of France).CrossRef | open url image1

[52]  L. Boithias, S. Sauvage, G. Merlina, S. Jean, J.-L. Probst, J. Sánchez Pérez, New insight into pesticide partition coefficient Kd for modelling pesticide fluvial transport: application to an agricultural catchment in south-western France. Chemosphere 2014, 99, 134.
New insight into pesticide partition coefficient Kd for modelling pesticide fluvial transport: application to an agricultural catchment in south-western France.CrossRef | 1:CAS:528:DC%2BC3sXhvVKgsLnK&md5=e5e7fe5b255074f65e60c6c1e35d87e6CAS | 24275149PubMed | open url image1

[53]  V. Aparicio, E. De Gerónimo, D. Marino, J. Primost, P. Carriquiriborde, J. Costa, Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 2013, 93, 1866.
Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins.CrossRef | 1:CAS:528:DC%2BC3sXhtVyisL3O&md5=0dd839b988fd1b1001319c1f99eea6a2CAS | 23849835PubMed | open url image1

[54]  O. Borggaard, A. Gimsing, Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag. Sci. 2008, 64, 441.
Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review.CrossRef | 1:CAS:528:DC%2BD1cXksVGqur0%3D&md5=a6e6306d5ad306cea9ad2616f905cfcaCAS | 18161065PubMed | open url image1

[55]  B. Nowack, Environmental chemistry of phosphonates. Water Res. 2003, 37, 2533.
Environmental chemistry of phosphonates.CrossRef | 1:CAS:528:DC%2BD3sXjsFOksrk%3D&md5=ff764e57c7c4c0aaf0723c7d2771406dCAS | 12753831PubMed | open url image1

[56]  A. Gimsing, O. Borggaard, M. Bang, Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils. Eur. J. Soil Sci. 2004, 55, 183.
Influence of soil composition on adsorption of glyphosate and phosphate by contrasting Danish surface soils.CrossRef | 1:CAS:528:DC%2BD2cXisFCgurk%3D&md5=35e2e41dd7f389a4abda1f7c2a8dd970CAS | open url image1

[57]  A. Gimsing, C. Szilas, O. Borggaard, Sorption of glyphosate and phosphate by variable-charge tropical soils from Tanzania. Geoderma 2007, 138, 127.
Sorption of glyphosate and phosphate by variable-charge tropical soils from Tanzania.CrossRef | 1:CAS:528:DC%2BD2sXhvVylsrc%3D&md5=4df319a83ca0c3a7d0c8d04870551c68CAS | open url image1

[58]  S. Kalkhoff, D. Kolpin, E. Thurman, I. Ferrer, D. Barcelo, Degradation of chloroacetanilide herbicides: the prevalence of sulfonic and oxanilic acid metabolites in Iowa groundwaters and surface waters. Environ. Sci. Technol. 1998, 32, 1738.
Degradation of chloroacetanilide herbicides: the prevalence of sulfonic and oxanilic acid metabolites in Iowa groundwaters and surface waters.CrossRef | 1:CAS:528:DyaK1cXis12jtbs%3D&md5=cf0207f60c895076dabaf6e1030f044dCAS | open url image1

[59]  N. Baran, L. Gourcy, Sorption and mineralization of S-metolachlor and its ionic metabolites in soils and vadose zone solids: consequences on groundwater quality in an alluvial aquifer (Ain Plain, France). J. Contam. Hydrol. 2013, 154, 20.
Sorption and mineralization of S-metolachlor and its ionic metabolites in soils and vadose zone solids: consequences on groundwater quality in an alluvial aquifer (Ain Plain, France).CrossRef | 1:CAS:528:DC%2BC3sXhsF2ntb%2FK&md5=7e405061063b48c706a83b4896be6468CAS | 24055953PubMed | open url image1

[60]  L. Krutz, S. Senseman, K. McInnes, D. Hoffman, D. Tierney, Adsorption and desorption of metolachlor and metolachlor metabolites in vegetated filter strip and cultivated soil. J. Environ. Qual. 2004, 33, 939.
Adsorption and desorption of metolachlor and metolachlor metabolites in vegetated filter strip and cultivated soil.CrossRef | 1:CAS:528:DC%2BD2cXksVylsLk%3D&md5=eaecc283bd071466a737f9c85d2164d4CAS | 15224930PubMed | open url image1

[61]  P. Rice, T. Anderson, J. Coats, Effect of sediment on the fate of metolachlor and atrazine in surface water. Environ. Toxicol. Chem. 2004, 23, 1145.
Effect of sediment on the fate of metolachlor and atrazine in surface water.CrossRef | 1:CAS:528:DC%2BD2cXjvFKhsbg%3D&md5=8cf77c2d71590a22257c7a08137e4eadCAS | 15180365PubMed | open url image1

[62]  A. Togola, I. Ibrahim, C. Gonzalez, SETAC Europe 23rd Annual Meeting, Glasgow, United Kingdom, 12–14 May 2013 (SETAC Europe: Brussels, Belgium).

[63]  L. Comoretto, B. Arfib, S. Chiron, Pesticides in the Rhône River delta (France): basic data for a field-based exposure assessment. Sci. Total Environ. 2007, 380, 124.
Pesticides in the Rhône River delta (France): basic data for a field-based exposure assessment.CrossRef | 1:CAS:528:DC%2BD2sXlvVamurw%3D&md5=819acbc723dce06edc2700709a7e12f4CAS | 17324449PubMed | open url image1

[64]  M. Garmouma, M. Teil, M. Blanchard, M. Chevreuil, Spatial and temporal variations of herbicide (triazines and phenylureas) concentrations in the catchment basin of the Marne River (France). Sci. Total Environ. 1998, 224, 93.
Spatial and temporal variations of herbicide (triazines and phenylureas) concentrations in the catchment basin of the Marne River (France).CrossRef | 1:CAS:528:DyaK1cXotVKiur4%3D&md5=e97acf0a8a042daf883634fcc074d62aCAS | 9926428PubMed | open url image1

[65]  F. Cabanne, P. Gaillardon, R. Scalla, Phytotoxicity and metabolism of chlortoluron in two wheat varieties. Pestic. Biochem. Physiol. 1985, 23, 212.
Phytotoxicity and metabolism of chlortoluron in two wheat varieties.CrossRef | 1:CAS:528:DyaL2MXhsVCkurc%3D&md5=616988cff35b0c606f3a5b351fa24768CAS | open url image1

[66]  S. Sørensen, G. Bending, C. Jacobsen, A. Walker, J. Aamand, Microbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields. FEMS Microbiol. Ecol. 2003, 45, 1.
Microbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields.CrossRef | 19719601PubMed | open url image1

[67]  J. Chen, B. Gu, E. LeBoeuf, H. Pan, S. Dai, Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 2002, 48, 59.
Spectroscopic characterization of the structural and functional properties of natural organic matter fractions.CrossRef | 1:CAS:528:DC%2BD38XjvVGjtb0%3D&md5=9ed5193b7e2ab62e00743a80a41b1775CAS | 12137058PubMed | open url image1

[68]  H. Hyung, J.-H. Kim, Natural organic matter (NOM) adsorption to multiwalled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ. Sci. Technol. 2008, 42, 4416.
Natural organic matter (NOM) adsorption to multiwalled carbon nanotubes: effect of NOM characteristics and water quality parameters.CrossRef | 1:CAS:528:DC%2BD1cXlsVKms74%3D&md5=2a62e6ba80f768ac32c29672f93ded46CAS | 18605564PubMed | open url image1

[69]  R. Amon, R. Benner, Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 1996, 41, 41.
Bacterial utilization of different size classes of dissolved organic matter.CrossRef | 1:CAS:528:DyaK28XitlalsLk%3D&md5=dffdfc363726e9b3d65cec489db03a5bCAS | open url image1



Supplementary MaterialSupplementary Material (1.5 MB) Export Citation