Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Revision of Nicrophorus in part: new species and inferred phylogeny of the nepalensis-group based on evidence from morphology and mitochondrial DNA (Coleoptera : Silphidae : Nicrophorinae)

Derek S. Sikes A D , Ronald B. Madge B and Stephen T. Trumbo C
+ Author Affliations
- Author Affliations

A Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.

B 1637 16 Street S. E., Calgary, Alberta, T2G 3P6, Canada.

C Department of Ecology and Evolutionary Biology, University of Connecticut, Waterbury, Connecticut, 06710, USA.

D Corresponding author. Email: dsikes@ucalgary.ca

Invertebrate Systematics 20(3) 305-365 https://doi.org/10.1071/IS05020
Submitted: 13 May 2005  Accepted: 22 February 2006   Published: 20 June 2006

Abstract

Carrion beetles of the genus Nicrophorus Fabricius, 1775 (Silphidae) are well known for their biparental brood care and monopolisation of small vertebrate carcasses in subterranean crypts. Although the taxonomy of New World species has received modern attention, the fauna of Asia, primarily of the nepalensis-group of species, has not. Herein we revise this species-group and describe as new the following seven species: Nicrophorus charon Sikes & Madge (Sulawesi), Nicrophorus herscheli Sikes & Madge (Sumatra), Nicrophorus insignis Sikes & Madge (Flores Island), Nicrophorus melissae Sikes & Madge (Nepal, Bhutan), Nicrophorus reticulatus Sikes & Madge (Guadalcanal), Nicrophorus schawalleri Sikes & Madge (Gansu, Shaanxi, Sichuan Province) and Nicrophorus trumboi Sikes & Madge (Nepal, Bhutan). We obtained a preliminary phylogeny using morphology and mtDNA (COII). This was inferred using maximum likelihood and Bayesian methods with the Mkv and GTR+I+G models (parsimony was rejected by the Akaike information criterion for being excessively parameter-rich). The phylogenetic signal in the morphological dataset was not strong and results were confounded by a ‘long-branch’ species, N. reticulatus. The signal was stronger in the combined dataset and the COII-only dataset. The molecular phylogeny supported the new status of species N. trumboi and N. melissae. Support was found for a mainland origin of the group with subsequent radiations into the Malay Archipelago.

Additional keywords: Bayesian phylogenetic inference, China, Himalayas, Malay Archipelago, maximum likelihood, Mkv model, Nepal.


Acknowledgments

We thank the multitude of curators and collections managers who assisted with loans of study material including: N. Berti (MNHN), M. Brendell & M. Barclay (BMNH), R. W. Brooks (SEMC), B. Brugge (ZMAN), M.-L. Chan (NMNS), L.-y. Chou (TARI), R. Danielsson (MZLU), A. Davis (CNCI), F. Génier (CMNC), W. J. Hanson (EMUS), J. Háva (JHC), L. H. Herman (AMNH), E. R. Hoebeke (CUIC), G. N. House (NMNH, USNM), M. Jäch (NHMW), O. Jäger (SMTD), J. Jelínek (NMPC), D. Kavanaugh (CASC), A. G. Kireitshuk (ZMAS), K. Konishi (ITLJ), S. Krauth (IRCW), W. Wehling (MSUC), O. Martin (ZMUC), O. Merkl (HNHM), M. Nishikawa (MNC), S. Nomura (NSMT), G. R. Noonan (MCPM), M. Ôhara (EIHU), P. Parrillo (FMNH), S. B. Peck (SBPC), P. Perkins (MCZC), E. G. Riley (TAMU), G. A. Sammuelson (BPBM), W. Schawaller (SMNS), J. Schneider (JSC), H. Silfverberg (MZHF), R. W. Sites (UMRM), M. Uhlig (ZMHB), T. W. Pietsch (TAMU2), A. Vesmanis (SMFD), B. Viklund (NHRS), K. Walker (MVMA), T. Wier (ANIC), and L.-y. Zheng (NKUM). We thank those who helped us obtain specimens with preserved DNA: A. Riede, S. Suzuki, M. Kon, K. Araya, M. Maruyama, J. Horák, S. B. Peck, D. Mohagan, B. D. Gill. Numerous faculty in the Ecology and Evolutionary Biology department at the University of Connecticut have assisted this project in various ways, including Janine Caira, Paul Lewis, Chris Simon, Jim Slater, and David Wagner. Expeditions to Nepal and Japan were wonderfully successful thanks to the generosity and assistance of Dhruba Manandhar (Nepal) and Masahiro Kon, Seizi Suzuki, Masahiro Ôhara, Tomoyosi Nisimura, Munetoshi Maruyama, and Masahiro Nagano (Japan). DSS thanks his good friend Piotr Naskrecki for countless hours of taxonomic, computer, and photography related discussions (and for tolerating all the carrion). This research was enormously simplified by use of Piotr’s custom-built database MANTIS (A Manager of Taxonomic Information and Specimens (Naskrecki 2001)). Derek thanks his wonderful wife Melissa for her support and love. This project was supported by an Ernst Mayr grant and NSERC Discovery grant to Derek Sikes and a National Science Foundation Grant (DEB-9981381), a University of Connecticut Research Council grant, and a National Geographic Society grant to Stephen Trumbo.


References


Akaike H. (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
CrossRef | open url image1

Anderson R. S. (1982) Resource partitioning in the carrion beetle (Coleoptera: Silphidae) fauna of southern Ontario: ecological and evolutionary considerations. Canadian Journal of Zoology 60, 1314–1325. open url image1

Anderson J. S. (2001) The phylogenetic trunk: maximal inclusion of taxa with missing data in an analysis of the lepospondyli (Vertebrata, Tetrapoda). Systematic Biology 50, 170–193.
PubMed |
open url image1

Anderson R. S., Peck S. B. (1986) Geographic patterns of colour variation in North American Nicrophorus burying beetles (Coleoptera; Silphidae). Journal of Natural History 20, 283–297. open url image1

Anduaga S., Huerta C. (2001) Effect of parental care on the duration of larval development and offspring survival in Nicrophorus mexicanus Matthews (Coleoptera: Silphidae). Coleopterists Bulletin 55, 264–271. open url image1

Arnett R. H. (1946) A new species of Nicrophorus from the Philippine Islands (Coleoptera, Silphidae). Proceedings of the Entomological Society of Washington 48, 207–209. open url image1

Arnett R. H. (1950) The Silphidae of the Philippine Islands (Coleoptera). Proceedings of the Entomological Society of Washington 52, 63–69. open url image1

Arnett R. H.Jr, Samuelson G. A., and Nishida G. M. (1993). ‘The Insect and Spider Collections of the World.’ 2nd edn. (Sandhill Crane Press, Inc.: Gainesville, FL, USA.)

Bliss R. Q. (1949) Studies on the Silphidae, I. Secondary sexual differences in the genus Nicrophorus (Coleoptera). Entomological News 60, 197–204. open url image1

Buckley T. R., Cunningham C. W. (2002) The effects of nucleotide substitution model assumptions on estimates of nonparametric bootstrap support. Molecular Biology and Evolution 19, 394–405.
PubMed |
open url image1

Bull J. J., Huelsenbeck J. P., Cunningham C. W., Swofford D. L., Waddell P. J. (1993) Partitioning and combining data in phylogenetic analysis. Systematic Biology 42, 384–397. open url image1

Darlu P., Lecointre G. (2002) When does the incongruence length difference test fail? Molecular Biology and Evolution 19, 432–437.
PubMed |
open url image1

de Pinna M. C. C. (1991) Concepts and test of homology in the cladistic paradigm. Cladistics 7, 317–338. open url image1

Easton C. (1980) A method of sexing three species of Nicrophorus (Col., Silphidae). Entomologist’s Monthly Magazine 115, 121–123. open url image1

Emetz V., Schawaller W. (1975) Silphidae aus dem Nepal-Himalaya (Ins.: Col.). Senckenbergiana Biologica 56, 221–231. open url image1

Erixon P., Svennblad B., Britton T., Oxelman B. (2003) Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Systematic Biology 52, 665–673.
CrossRef | PubMed | open url image1

Farris J. S., Källersjö M., Kluge A. G., Built C. (1994) Testing significance of incongruence. Cladistics 10, 315–319.
CrossRef | open url image1

Giribet G., Wheeler W. C. (1999) On gaps. Molecular Phylogenetics and Evolution 13, 132–143.
CrossRef | PubMed | open url image1

Green P. J. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732.
CrossRef |
open url image1

Grouvelle A. H. (1893) Espèce nouvelle du genre Necrophorus de l’archipel Indo-Néerlandais. Notes from the Leyden Museum 15, 161–162. open url image1

Gu X., Fu Y.-X., Li W.-H. (1995) Maximum likelihood estimation of the heterogeneity of substitution rare among nucleotide sites. Molecular Biology and Evolution 12, 546–557.
PubMed |
open url image1

Gustincich S., Manfioletti G., Del Sal G., Schneider C., Carnichi P. (1991) A fast method for high quality genomic DNA extraction from whole human blood. BioTechniques 11, 298–301.
PubMed |
open url image1

Hanski I. (1983) Distributional ecology and abundance of dung and carrion-feeding beetles (Scarabaeidae) in tropical rain forests in Sarawak, Borneo. Acta Zoologica Fennici 167, 1–45. open url image1

Hanski I., and Krikken J. (1991). Dung beetles in tropical forests of south-east Asia. In ‘Dung Beetle Ecology’. (Eds I. Hanski and Y. Camberfort.) pp. 179–197. (Princeton University Press: Princeton, NJ, USA.)

Hanski I., and Niemelä J. (1990). Elevational distributions of dung and carrion beetles in northern Sulawesi. In ‘Insects and the Rainforests of South East Asia (Wallacea)’. (Eds W. J. Knight and J. D. Holloway.) pp. 145–152. (Royal Entomological Society: London, UK.)

Hastings W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109.
CrossRef |
open url image1

Hatch M. H. (1927) Studies on the Silphinae. Journal of the New York Entomological Society 35, 331–370. open url image1

Háva J., Schneider J., Růžička J. (1999) Four new species of carrion beetles from China (Coleoptera: Silphidae). Entomological Problems 30, 67–83. open url image1

Hawkins J. A., Hughes C. E., Scotland R. W. (1997) Primary Homology Assessment, Characters and Character States. Cladistics 13, 275–283.
CrossRef | open url image1

Herschel J. D. (1807) Die Europäischen Arten von Necrophorus mit Unterscheidung einer neuen Art: Necrophorus Vestigator. Magazin für Insektenkunde 6, 268–276. open url image1

Hillis D. M., and Wiens J. J. (2000). Molecules versus morphology in systematics: conflicts, artifacts, and misconceptions. In ‘Phylogenetic Analysis of Morphological Data’. (Ed. J. Wiens.) pp. 1–19. (Smithsonian Institution Press: Washington, DC, USA.)

Hope F. W. (1831). Synopsis of the new species of Nepaul insects in the collection of Major General Hardwicke. In ‘The Zoological Miscellany. Vol. 1’. (Ed. J. E. Gray) pp. 21–32. (Treuttel, Wurtz & Co., London, UK.)

Huelsenbeck J. P., Bollback J. P. (2001) Empirical and hierarchical Bayesian estimation of ancestral states. Systematic Biology 50, 351–366.
CrossRef | PubMed | open url image1

Huelsenbeck J. P., Ronquist F. (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics (Oxford, England) 17, 754–755.
CrossRef | PubMed | open url image1

Huelsenbeck J. P., Ronquist F., Nielsen R., Bollback J. P. (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314.
CrossRef | PubMed | open url image1

Huelsenbeck J. P., Larget B., Miller R. E., Ronquist F. (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Systematic Biology 51, 673–688.
CrossRef | PubMed | open url image1

Hufford L. (1992) Rosidae and their relationships to other nonmagnoliid dicotyledons: A phylogenetic analysis using morphological and chemical data. Annals of the Missouri Botanical Garden 79, 218–248.
CrossRef |
open url image1

ICZN (1999). ‘International Code of Zoological Nomenclature, Fourth Edition, adopted by the International Union of Biological Sciences.’ (International Trust for Zoological Nomenclature: London, UK.)

Kamimura K., Nakane T., Koyama N. (1964) Seasonal and altitudinal distribution of beetles in Mt. Jônen, the Japan Alps, with descriptions of new species, I (Studies on the insects of high mountains, III). Scientific Reports of the Kyoto Prefectural University (Natural Science, Living Science, Welfare Science) (A) 15, 17–38. open url image1

Kass R. E., Raftery A. E. (1995) Bayes factors. Journal. American Statistical Association 90, 773–795.
CrossRef |
open url image1

Kearney M. (2002) Fragmentary taxa, missing data, and ambiguity: mistaken assumptions and conclusions. Systematic Biology 51, 369–381.
CrossRef | PubMed | open url image1

Kluge A. G. (1989) A concern for evidence and a phylogenetic hypothesis among Epicrates (Boidae, Serpentes). Systematic Zoology 38, 7–25.
CrossRef |
open url image1

Kraatz G. (1877) Beiträge zur Käferfauna von Japan, meist auf R. Hiller’s Sammlungen basirt Deutsche Entomologische Zeitschrift 21, 81–128. open url image1

Kress W. J. (1990) The phylogeny and classification of the Zingerberales. Annales of the Missouri Botanical Garden 77, 698–721.
CrossRef |
open url image1

Larget B., Simon D. (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16, 750–759. open url image1

Leaché A. D., Reeder T. W. (2002) Molecular systematics of the Eastern Fence lizard (Sceloporus undulates): A comparison of parsimony, likelihood, and Bayesian approaches. Systematic Biology 51, 44–68.
CrossRef | PubMed | open url image1

Lewis G. (1887) A list of the Japanese Silphidae. Annals and Magazine of Natural History 5, 338–342. open url image1

Lewis P. O. (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology 50, 913–925.
CrossRef | PubMed | open url image1

Li S. (1996). Phylogenetic tree construction using Markov chain Monte Carlo. Ph.D. Thesis, Ohio State University, Columbus, OH, USA.

Liu H., Beckenbach A. T. (1992) Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Molecular Phylogenetics and Evolution 1, 41–52.
CrossRef | PubMed | open url image1

Livezey B. C. (1989) Phylogenetic relationships and incipient flightlessness of the extinct Auckland Islands Merganser. The Wilson Bulletin 101, 410–435. open url image1

Lutzoni F., Wagner P., Reeb V., Zoller S. (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49, 628–651.
CrossRef | PubMed | open url image1

Maddison W. (1993) Missing data versus missing characters in phylogenetic analysis. Systematic Biology 42, 576–581. open url image1

Maddison W. P. (1997) Gene trees in species trees. Systematic Biology 46, 523–536. open url image1

Maddison W. P., and Maddison D. R. (2001). ‘MacClade: Interactive Analysis of Phylogeny andCharacter Evolution, ver. 4.01.’ (Sinauer, Sunderland, MA, USA.)

Martin S. J. (1989) Altitudinal distribution of burying beetles (Coleoptera, Silphidae) in the Southern Alps of Japan. Japanese Journal of Entomology 57, 876–879. open url image1

Mau B. (1996). Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Ph.D. Thesis, University of Wisconsin, Madison, WI, USA.

Mau B., Newton M. (1997) Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. Journal of Computational and Graphical Statistics 6, 122–131.
CrossRef |
open url image1

Mau B., Newton M., Larget B. (1999) Bayesian phylogenetic inference via Markov chain Monte carlo methods. Biometrics 55, 1–12.
CrossRef | PubMed | open url image1

Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., Teller E. (1953) Equations of state calculations by fast computing machines. The Journal of Chemical Physics 21, 1087–1091.
CrossRef | open url image1

Minin V., Abdo Z., Joyce P., Sullivan J. (2003) Performance-based selection of likelihood models for phylogeny estimation. Systematic Biology 52, 674–683.
CrossRef | PubMed | open url image1

Moore W. S. (1995) Inferring phylogenies from mtDNA variation: mitochondrial gene trees versus nuclear-gene trees. Evolution 49, 718–726.
CrossRef |
open url image1

Naskrecki P. (2001). ‘MANTIS: A Manager of Taxanomic Information and Specimens. FileMakerPro Database.’ Available online at: http://140.247.119.145/Mantis/ [verified March 2006]

Newton M., Mau B., and Larget B. (1999). Markov chain Monte Carlo for the Bayesian analysis of evolutionary trees from aligned molecular sequences. In ‘Monograph Series of the Institute of Mathematical Statistics. Statistics in Molecular Biology’. (Eds F. Seillier-Moseiwitch, T. P. Speed and M. Waterman.)

Nishikawa M. (1986) A review of the grouping within the tribe Nicrophorini, with a check-list of world species. Kanagawa-Chuho, Kawasaki 80, 93–100. open url image1

Nisimura T., Kon M., Numata H. (2002) Bimodal life cycle of the burying beetle Nicrophorus quadripunctatus in relation to its summer reproductive diapause. Ecological Entomology 27, 220–228.
CrossRef | open url image1

Nixon K. C., Carpenter J. M. (1993) On outgroups. Cladistics 9, 413–426.
CrossRef | open url image1

Nixon K., Davis J. (1991) Polymorphic taxa, missing values and cladistic analysis. Cladistics 7, 233–241.
CrossRef | open url image1

Nylander J. A., Ronquist F., Huelsenbeck J. P., Nieves-Aldrey J. L. (2004) Bayesian phylogenetic analysis of combined data. Systematic Biology 53, 47–67.
CrossRef | PubMed | open url image1

Ôhara M. (1992) Notes on the insects fauna of the Nagahashi Naebo area, Otaru, central Hokkaido, Japan, No. 1. -Coleoptera. Bulletin of the Otaru Musem 6, 1–21. open url image1

Ôhara M. (1994a) On the beetles in Otaru, Hokkaido. Hokkaido no Shizen to Seibutsu (Nature and Organisms of Hokkaido) 9, 59–65. open url image1

Ôhara M. (1994b) Notes of Insect in Mt. Yotei, Hokkaido. Kutchan-sosyo 14, 1–89. open url image1

Ôhara M. (1995a) Notes on the insect fauna of the Nagahashi Naebo area, Otaru, central Hokkaido, Japan, No. 9.- Survey of the research in 1992 and 1993, and on the beetles collected by bait trap with dead chicken. Bulletin of the Otaru Musem 8, 19–42. open url image1

Ôhara M. (1995b) Notes on insect fauna of the Okusawa-Suigenchi area, Otaru, central Hokkaido, Japan, No. 1. Coleoptera. Bulletin of the Otaru Musem 8, 1–13. open url image1

Ôhara M. (1997) Notes on the insect fauna of the Niseko Mountains, central Hokkaido, Japan, No. 1. Survey of the research and records of beetles. Bulletin of the Otaru Musem 10, 97–110. open url image1

Ôhara M., Higashi S. (1987) Interference by ground beetles with the dispersal by ants of seeds of Trillium species (Lilianceae). Journal of Ecology 75, 1091–1098. open url image1

Ôhara M., Yabuki T. (1992) Insect faunal survey of Mt. Yotei, Hokkaido. – Coleoptera. Bulletin of the Otaru Musem 6, 55–62. open url image1

Ôhara M., Miyashita K., Yabuki T. (1995) Insect faunal survey of Mt. Yotei, Hokkaido. Coleoptera. Bulletin of the Otaru Musem 8, 65–80. open url image1

Patterson C. (1982). Morphological characters and homology. In ‘Problems in Phylogenetic Reconstruction’. (Eds K. A. Joysey and A. E. Friday.) pp. 21–74. (Academic press: Lodon, UK.)

Peck S. B. (2001) Review of the carrion beetles of Australia and New Guinea (Coleoptera: Silphidae). Australian Journal of Entomology 40, 93–101.
CrossRef | open url image1

Peck S. B., Anderson R. S. (1985) Taxonomy, phylogeny and biogeography of the carrion beetles of Latin America (Coleoptera: Silphidae). Quaestiones Entomologicae 21, 247–317. open url image1

Platnick N. I., Griswold C. E., Coddington J. A. (1991) On missing entries in cladistic analysis. Cladistics 7, 337–343.
CrossRef | open url image1

Portevin G. (1920) Revision des Silphini et Necrophorini de la région indo-malaise. Bulletin du Muséum National d’Histoire Naturelle 26, 395–401. open url image1

Portevin G. (1923) Revision des Necrophorini du globe. Bulletin du Muséum National d’Histoire Naturelle 29, 64–309. open url image1

Portevin G. (1926). ‘Les Grands Nécrophages du Globe. Silphini – Necrodini – Necrophorini. Encyclopédie Entomologique (A), Vol. 6.’ (Lechevalier: Paris, France.)

Posada D., Buckley T. R. (2004) Model selection and model averaging in phylogenetics: Advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53, 793–808.
CrossRef | PubMed | open url image1

Posada D., Crandall K. A. (1998) MODELTEST: Testing the model of DNA subsitution. Bioinformatics (Oxford, England) 14, 817–818.
CrossRef | PubMed | open url image1

Rannala B., Yang Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43, 304–311.
CrossRef | PubMed | open url image1

Rauter C. M., Moore A. J. (2002) Quantitative genetics of growth and development time in the burying beetle Nicrophorus pustulatus in the presence and absence of post-hatching parental care. Evolution 56, 96–110.
PubMed |
open url image1

Root T. L., Price J. T., Hall K. R., Schneider S. H., Rosenzweig C., Pounds J. A. (2003) Fingerprints of global warming on wild animals and plants. Nature 421, 57–60.
CrossRef | PubMed | open url image1

Růžička J., Háva J., Schneider J. (2000) Taxonomical and distributional notes on Oriental Silphidae, with description of Nicrophorus sausai sp. n. (Insecta: Coleoptera). Reichenbachia 33, 377–384. open url image1

Sambrook J., Fritsch E. F., and Maniatis T. (1989). ‘Molecular Cloning: A Laboratory Manual.’ 2nd edn. (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA.)

Satou A., Nisimura T., Numata H. (2001) Cost and necessity of parental care in the burying beetle Nicrophorus quadripunctatus. Zoological Science 18, 975–979.
CrossRef | open url image1

Schawaller W. (1977) Ergebnisse der Bhutan-Expedition 1972 des Naturhistorischen Museums in Basel. Coleoptera: Fam. Silphidae. Entomologica Basiliensia 2, 259–260. open url image1

Schawaller W. (1982) Die Aaskäfer des Himalaya (Insecta: Coleoptera: Silphidae s. str.). Senckenbergiana Biologica 62, 237–260. open url image1

Scott M. P. (1998) The ecology and behavior of burying beetles. Annual Review of Entomology 43, 595–618.
CrossRef | PubMed | open url image1

Semenov-Tian-Shanskij A. (1933) De tribu Necrophorini (Coleoptera, Silphidae) classificanda et de ejus distributione geographica. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR 1, 149–160. open url image1

Serb J. M., Phiillips C. A., Iverson J. B. (2001) Molecular phylogeny and biogeography of Kinosternon flavescens based on complete mitochondrial control region sequences. Molecular Phylogenetics and Evolution 18, 149–162.
CrossRef | PubMed | open url image1

Sikes D. S. (2003). A revision of the subfamily Nicrophorinae Kirby (Insecta: Coleoptera: Silphidae). Ph.D. Thesis, Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA.

Sikes D. S., Peck S. B. (2000) Description of Nicrophorus hispaniola, new species, from Hispaniola (Coleoptera: Silphidae) and a key to the species of Nicrophorus of the New World. Annals of the Entomological Society of America 93, 391–397. open url image1

Sikes D. S., Madge R. B., Newton A. F. (2002) A catalog of the Nicrophorinae (Coleoptera: Silphidae) of the world. Zootaxa 65, 1–304. open url image1

Simmons M. P., Ochoterena H. (2000) Gaps as characters in sequence-based phylogenetic analyses. Systematic Biology 49, 369–381.
CrossRef | PubMed | open url image1

Simon C., Frati F., Beckenbach A., Crespi B., Liu H., Flook P. (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701. open url image1

Smiseth P. T., Darwell C. T., Moore A. J. (2003) Partial begging: an empirical model for the early evolution of offspring signaling. Proceedings of the Royal Society of London. Series B. Biological Sciences 270, 1773–1777.
CrossRef | open url image1

Steppan S. J. (1998) Phylogenetic relationships and species limits within Phyllotis (Rodentia: Sigmodontinae): Concordance between mtDNA sequences and morphology. Journal of Mammalogy 79, 573–593. open url image1

Stickney F. S. (1923) The head-capsule of Coleoptera. Illinois Biological Monographs 8, 1–104. open url image1

Strong E. E., Lipscomb D. (1999) Character coding and inapplicable data. Cladistics 15, 363–371.
CrossRef | open url image1

Swofford D. L. (2002). ‘PAUP*. Phylogenetic Analysis using Parsimony (*And Other Methods), version 4.0b10.’ (Sinauer: Sunderland, MA, USA.)

Trumbo S. T., Sikes D. S. (2000) Sexual selection and leg morphology in Nicrophorus orbicollis and Ptomascopus morio. Entomological Science 3, 585–589. open url image1

Trumbo S. T., Kon M., Sikes D. (2001) The reproductive biology of Ptomascopus morio, a brood parasite of Nicrophorus. Journal of Zoology 255, 543–560. open url image1

Tuffley C., Steel M. A. (1997) Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bulletin of Mathematical Biology 59, 581–607.
CrossRef | PubMed | open url image1

Wiens J. J. (1998) Does adding characters with missing data increase or decrease phylogenetic accuracy? Systematic Biology 47, 625–640.
CrossRef | PubMed | open url image1

Wiens J. J., Penkrot T. A. (2002) Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology 51, 69–91.
CrossRef | PubMed | open url image1

Wiens J. J., Reeder T. W. (1995) Combining data sets with different numbers of taxa for phylogenetic analysis. Systematic Biology 44, 548–558. open url image1

Wilkinson M. (1995a) Arbitrary resolutions, missing entries, and the problem of zero-length branches in parsimony analysis. Systematic Biology 44, 108–111. open url image1

Wilkinson M. (1995b) Coping with abundant missing entries in phylogenetic inference using parsimony. Systematic Biology 44, 501–514. open url image1

Xu H., Suzuki N. (2001) Effects of carcass size and parental feeding on reproductive success of the burying beetle Nicrophorus quadripunctatus (Coleoptera: Silphidae). Entomological Science 4, 217–222. open url image1

Yang Z. (1993) Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution 10, 1396–1401.
PubMed |
open url image1

Yang Z. (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. Journal of Molecular Evolution 39, 306–314.
CrossRef | PubMed | open url image1

Yang Z., Rannala B. (1997) Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte carlo method. Molecular Biology and Evolution 14, 717–724.
PubMed |
open url image1










Appendix 1.  Specimens from which DNA was extracted for sequencing of the COII mitochondrial gene
DNA voucher specimens are stored in the first author’s collection at –80°C. Specimen ID codes correspond to specimen records in the project database and the labels associated with the specimens
A1



Appendix 2.  Museums and collections from which specimens were borrowed
Click to zoom



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (448 KB) Export Citation Cited By (15)