Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography

A New Zealand species of the trans-Tasman centipede order Craterostigmomorpha (Arthropoda : Chilopoda) corroborated by molecular evidence

Gregory D. Edgecombe A C and Gonzalo Giribet B C

A Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.

B Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

C Corresponding authors. Email:,

Invertebrate Systematics 22(1) 1-15
Submitted: 23 July 2007  Accepted: 27 November 2007   Published: 18 March 2008


Craterostigmus tasmanianus Pocock, 1902, is the sole species in the centipede order Craterostigmomorpha and the focus of much phylogenetic research in Chilopoda. Originally named from Tasmania, Craterostigmus from New Zealand was first considered conspecific with Tasmanian samples based on external morphology, though recent anatomical studies have argued for a deep divergence between New Zealand and Tasmanian Craterostigmus, and a high-ranking taxonomic separation has been advocated. Unambiguous diagnostic nucleotide characters in nuclear ribosomal 18S and 28S rRNA genes as well as in the mitochondrial 16S rRNA, together with the significantly smaller size of New Zealand individuals, the arrangement of supernumerary Malpighian tubules, and patterns in leg spinosity, permit distinction of a New Zealand species, Craterostigmus crabilli, sp. nov. In addition, phylogenetic analysis of four markers (the aforementioned markers plus cytochrome c oxidase subunit I) suggests differentiation of C. tasmanianus from the New Zealand specimens. Combination of the nuclear ribosomal genes and mitochondrial 16S rRNA and COI sequences retrieves a geographic pattern within C. crabilli, sp. nov. in which geographic proximity is decoupled from closest affinities, although the 16S rRNA dataset alone shows more geographic structure. The genetic pattern observed, where among species diversity (for both mitochondrial markers) is equivalent to, or greater than, the within species diversity, is not consistent with a recent long-distance dispersal event, and a relictual Gondwanan distribution is the most plausible alternative.

Additional keywords: biogeography, Craterostigmus, Gondwana, molecular diagnosis, Tasmantia, Zealandia.


Archey G. 1917 The occurrence in New Zealand of Craterostigmus tasmanianus Pocock (Chilopoda). Transactions and Proceedings of the New Zealand Institute 49 319 320

Archey G. 1936 Revision of the Chilopoda of New Zealand. Part 1. Records of the Auckland Institute and Museum 1 43 70

Borucki H. 1996 Evolution und Phylogenetisches System der Chilopoda (Mandibulata, Tracheata). Verhandlungen des naturwissenschaftlichen Vereins in Hamburg 35 95 226

Borucki H. Rosenberg J. 1997 Transport-active organs within the ‘ano-genital’ capsule of Craterostigmus tasmanianus (Chilopoda, Craterostigmomorpha). Zoomorphology 117 49 52 DOI

Boyer S. L. Giribet G. 2007 A new model Gondwanan taxon: systematics and biogeography of the harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi), with a taxonomic revision of genera from Australia and New Zealand. Cladistics 23 337 361 DOI

Boyer S. L. Baker J. M. Giribet G. 2007 Deep genetic divergencesin Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a wide-spread ‘mite harvestman’ defies DNA taxonomy. Molecular Ecology 16 4999 5016 DOI

Carcupino M. Fausto A. M. Ortega M. L. B. Zapparoli M. Mazzini M. 1996 Spermatophore development and sperm ultrastructure in Craterostigmus tasmanianus (Chilopoda, Craterostigmomorpha). Zoomorphology 116 103 110

Colgan D. J. McLauchlan A. Wilson G. D. F. Livingston S. P. Edgecombe G. D. Macaranas J. Cassis G. Gray M. R. 1998 Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46 419 437 DOI

Cook L. G. Crisp M. D. 2005 Not so ancient: the extant crown group of Nothofagus represents a post-Gondwanan radiation. Proceedings of the Royal Society. Biological Sciences 272 2535 2544 DOI

Crosby T. K. Dugdale J. S. Watt J. C. 1976 Recording specimen localities in New Zealand: an arbitrary system of areas and codes defined. New Zealand Journal of Zoology 3 69

De Laet J. E. (2005). Parsimony and the problem of inapplicables in sequence data. In ‘Parsimony, Phylogeny, and Genomics’. (Ed. V. A. Albert.) pp. 81–116. (Oxford University Press: Oxford, UK.)

Dohle W. (1990). Some observations on morphology and affinities of Craterostigmus tasmanianus (Chilopoda). In ‘Proceedings of the 7th International Congress of Myriapodology, Vittorio Veneto, Italy, July 1987’. (Ed. A. Minelli.) pp. 69–79. (E. J. Brill: Leiden, The Netherlands.)

Edgecombe G. D. Giribet G. 2003 Relationships of Henicopidae (Chilopoda: Lithobiomorpha): new molecular data, classification and biogeography. African Invertebrates 44 13 38

Edgecombe G. D. Giribet G. 2004 a Adding mitochondrial sequence data (16S rRNA and cytochrome c oxidase subunit I) to the phylogeny of centipedes (Myriapoda, Chilopoda): an analysis of morphology and four molecular loci. Journal of Zoological Systematics and Evolutionary Research 42 89 134 DOI

Edgecombe G. D. Giribet G. 2004 b Molecular phylogeny of Australasian anopsobiine centipedes (Chilopoda: Lithobiomorpha). Invertebrate Systematics 18 235 249 DOI

Edgecombe G. D. Giribet G. 2006 A century later – a total evidence re-evaluation of the phylogeny of scutigeromorph centipedes (Myriapoda: Chilopoda). Invertebrate Systematics 20 503 525 DOI

Edgecombe G. D., Giribet G., and Wheeler W. C. (1999). Phylogeny of Chilopoda: combining 18S and 28S rRNA sequences and morphology. In ‘Evolución y Filogenia de Arthropoda’. (Eds A. Melic, J. J. de Haro, M. Mendez and I. Ribera.) Boletín de la Sociedad Entomológica Aragonesa 26, 293–331.

Ernst A., and Rosenberg J. (2003). Structure and distribution of sensilla coeloconica on the maxillipedes of Chilopoda. In ‘Myriapodology in the New Millenium. Proceedings of the 12th International Congress of Myriapodology, South Africa, 2002’. (Ed. M. Hamer.) African Invertebrates 44, 155–168.

Ernst A. Rosenberg J. Mesibov R. Hilken G. 2002 Sensilla coeloconica on the maxillipede of the centipede Craterostigmus tasmanianus Pocock, 1902 (Chilopoda, Craterostigmomorpha). Abhandlungen und Berichte des Naturkundemuseums Görlitz 74 207 214

Ernst A. Rosenberg J. Hilken G. 2006 Structure and distribution of antennal sensillae in the centipede Craterostigmus tasmanianus Pocock, 1902 (Chilopoda, Craterostigmomorpha). Norwegian Journal of Entomology 53 153 164

Farris J. S. Källersjö M. Kluge A. G. Bult C. 1994 Testing significance of incongruence. Cladistics 10 315 319 DOI

Farris J. S. Albert V. A. Källersjö M. Lipscomb D. Kluge A. G. 1996 Parsimony jackknifing outperforms neighbor-joining. Cladistics 12 99 124 DOI

Giribet G. 2003 Stability in phylogenetic formulations and its relationship to nodal support. Systematic Biology 52 554 564 DOI

Giribet G. Edgecombe G. D. 2006 The importance of looking at small-scale patterns when inferring Gondwanan biogeography: a case study of the centipede Paralamyctes (Chilopoda, Lithobiomorpha, Henicopidae). Biological Journal of the Linnean Society 89 65 78 DOI

Giribet G., and Kury A. B. (2007). Phylogeny and biogeography. In ‘Harvestmen: The Biology of Opiliones’. (Eds R. Pinto-da-Rocha, G. Machado and G. Giribet.) pp. 62–87. (Harvard University Press: Cambridge, MA, USA.)

Giribet G. Carranza S. Riutort M. Baguñà J. Ribera C. 1999 Internal phylogeny of the Chilopoda (Myriapoda, Arthropoda) using complete 18S rDNA and partial 28S rDNA sequences. Philosophical Transactions of the Royal Society of London. Series B 354 215 222

Giribet G. Edgecombe G. D. Wheeler W. C. 2001 Arthropod phylogeny based on eight molecular loci and morphology. Nature 413 157 161 DOI

Hilken G. 1998 Vergleich von Tracheensystemen unter phylogenetischem Aspekt. Verhandlungen des naturwissenschaftlichen Vereins in Hamburg 37 5 94

Jordan G. J. 2001 An investigation of long-distance dispersal based on species native to both Tasmania and New Zealand. Australian Journal of Botany 49 333 340 DOI

Knapp M. Mudaliar R. Havell D. Wagstaff S. J. Lockhart P. J. 2007 The drowning of New Zealand and the problem of Agathis. Systematic Biology 56 862 870 DOI

Lewis J. G. E. (1981). ‘The Biology of Centipedes.’ (Cambridge University Press: Cambridge, UK.)

Linton E. W. (2005). ‘MacGDE: Genetic Data Environment for MacOS X.’ Software available at [Verified 14 January 2008].

Manton S. M. 1965 The evolution of arthopodan locomotory mechanisms, Part 8. Functional requirements and body design in Chilopoda, together with a comparative account of their skeleto-muscular systems and an Appendix on a comparison between burrowing forces of annelids and chilopods and its bearing upon the evolution of the arthropodan haemocoel. Journal of the Linnean Society (Zoology) 46 252 483

Maruzzo D., Bonato L., Brena C., Fusco G., and Minelli A. (2005). Appendage loss and regeneration in arthropods: a comparative view. In ‘Crustacea and Arthropod Relationships’. (Eds S. Koenemann and R. A. Jenner.) Crustacean Issues 16, 215–245.

McGlone M. S. 2005 Goodbye Gondwana. Journal of Biogeography 32 739 740 DOI

Mesibov R. 1995 Distribution and ecology of the centipede Craterostigmus tasmanianus Pocock, 1902 (Chilopoda: Craterostigmomorpha: Craterostigmidae) in Tasmania. The Tasmanian Naturalist 117 2 7

Mickevich M. F. Farris J. S. 1981 The implications of congruence in Menidia. Systematic Zoology 30 351 370 DOI

Müller C. H. G. Meyer-Rochow V. B. 2006 Fine structural description of the lateral ocellus of Craterostigmus tasmanianus Pocock, 1902 (Chilopoda: Craterostigmomorpha) and phylogenetic considerations. Journal of Morphology 267 850 865 DOI

Pocock R. I. 1902 A new and annectant type of chilopod. The Quarterly Journal of Microscopical Science 45 417 448

Prunescu C. 1965 Les systèmes genital et trachéal de Craterostigmus (Craterostigmomorpha, Chilopoda). Revue roumaine de Biologie. Série de Zoologie 10 309 314

Prunescu C. C. (1996). Plesiomorphic and apomorphic characters states in the Class Chilopoda. In ‘Acta Myriapodologica’. (Eds J.-J. Geoffroy, J.-P. Mauriès and M. Nguyen Duy-Jacquemin.) Mémoires du Muséum National d’Histoire Naturelle 169, 299–306.

Prunescu C. C., and Prunescu P. (1996). Supernumerary malpighian tubules in chilopods. In ‘Acta Myriapodologica’. (Eds J.-J. Geoffroy, J.-P. Mauriès and M. Nguyen Duy-Jacquemin.) Mémoires du Muséum National d’Histoire Naturelle 169, 437–440.

Prunescu C.-C. Prunescu P. 2006 Rudimentary supernumerary Malpighian tubules in the order Craterostigmomorpha Pocock, 1902. Norwegian Journal of Entomology 53 113 118

Prunescu C. C., Mesibov R., and Shinohara S. (1996). Preliminary data on the anatomy of the genital systems in Craterostigmus tasmanianus (Craterostigmomorpha) and Esastigmatobius longitarsis (Henicopidae, Lithobiomorpha) (Chilopoda). In ‘Acta Myriapodologica’. (Eds J.-J. Geoffroy, J.-P. Mauriès and M. Nguyen Duy-Jacquemin.) Mémoires du Muséum National d’Histoire Naturelle 169, 341–346.

Regier J. C. Shultz J. W. 2001 A phylogenetic analysis of Myriapoda (Arthropoda) using two nuclear protein-coding genes. Zoological Journal of the Linnean Society 132 469 486 DOI

Regier J. C. Wilson H. M. Shultz J. W. 2005 Phylogenetic analysis of Myriapoda using three nuclear protein-coding genes. Molecular Phylogenetics and Evolution 34 147 158

Rosenberg J. Müller C. H. G. Hilken G. 2006 Ultrastructural organization of the anal organs in the anal capsule of Craterostigmus tasmanianus Pocock, 1902 (Chilopoda, Craterostigmomorpha). Journal of Morphology 267 265 272 DOI

Sanmartín I. Ronquist F. 2004 Southern hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Systematic Biology 53 216 243 DOI

Sanmartín I. Wanntorp L. Winkworth R. C. 2007 West Wind Drift revisited: testing for directional dispersal in the Southern Hemisphere using event-based tree fitting. Journal of Biogeography 34 398 416 DOI

Shear W. A. Bonamo P. M. 1988 Devonobiomorpha, a new order of centipeds (Chilopoda) from the Middle Devonian of Gilboa, New York State, USA, and the phylogeny of centiped orders. American Museum Novitates 2927 1 30

Swofford D. L. (2002). ‘PAUP* 4.0: Phylogenetic Analysis Using Parsimony (*and Other Methods).’ (Sinauer Associates: Sunderland, MA, USA.)

Trewick S. A. Paterson A. M. Campbell H. J. 2007 Hello New Zealand. Journal of Biogeography 34 1 6 DOI

Waters J. M. Craw D. 2006 Goodbye Gondwana? New Zealand biogeography, geology, and the problem of circularity. Systematic Biology 55 351 356 DOI

Wheeler W. C. 1995 Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Systematic Biology 44 321 331 DOI

Wheeler W. C. 1996 Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12 1 9 DOI

Wheeler W. C. 2003 Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search. Cladistics 19 261 268 DOI

Wheeler W. C., Gladstein D., and De Laet J. (2004). ‘POY version 3.0.’ (American Museum of Natural History: New York, USA). Software and documentation available at [verified July 2007]

Wirkner C. S. Pass G. 2002 The circulatory system in Chilopoda: functional morphology and phylogenetic aspects. Acta Zoologica 83 193 202 DOI

Export Citation Cited By (24)