Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

A revision of the textricellin spider genus Raveniella (Araneae : Araneoidea : Micropholcommatidae): exploring patterns of phylogeny and biogeography in an Australian biodiversity hotspot

Michael G. Rix A B C , Mark S. Harvey B A and J. Dale Roberts A
+ Author Affiliations
- Author Affiliations

A School of Animal Biology M092, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia.

B Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welsphool D.C., Perth, WA 6986, Australia.

C Corresponding author. Email: michael.rix@museum.wa.gov.au

Invertebrate Systematics 24(3) 209-237 https://doi.org/10.1071/IS09048
Submitted: 4 December 2009  Accepted: 12 June 2010   Published: 30 August 2010

Abstract

South-western Western Australia is a biodiversity hotspot, with high levels of local endemism and a rich but largely undescribed terrestrial invertebrate fauna. Very few phylogeographic studies have been undertaken on south-western Australian invertebrate taxa, and almost nothing is known about historical biogeographic or cladogenic processes, particularly on the relatively young, speciose Quaternary sand dune habitats of the Swan Coastal Plain. Phylogeographic and taxonomic patterns were studied in textricellin micropholcommatid spiders belonging to the genus Raveniella Rix & Harvey. The Micropholcommatidae is a family of small spiders with a widespread distribution in southern Western Australia, and most species are spatially restricted to refugial microhabitats. In total, 340 specimens of Raveniella were collected from 36 surveyed localities on the Swan Coastal Plain and 17 non-Swan Coastal Plain reference localities in south-western Western Australia. Fragments from three nuclear rRNA genes (5.8S, 18S and ITS2), and one mitochondrial protein-coding gene (COI) were used to infer the phylogeny of the genus Raveniella, and to examine phylogeographic patterns on the Swan Coastal Plain. Five new species of Raveniella are described from Western Australia (R. arenacea, sp. nov., R. cirrata, sp. nov., R. janineae, sp. nov., R. mucronata, sp. nov. and R. subcirrata, sp. nov.), along with a single new species from south-eastern Australia (R. apopsis, sp. nov.). Four species of Raveniella were found on the Swan Coastal Plain: two with broader distributions in the High Rainfall and Transitional Rainfall Zones (R. peckorum Rix & Harvey, R. cirrata); and two endemic to the Swan Coastal Plain, found only on the western-most Quindalup dunes (R. arenacea, R. subcirrata). Two coastally restricted species (R. subcirrata, R. janineae) were found to be morphologically cryptic but genetically highly distinct, with female specimens morphologically indistinguishable from their respective sister-taxa (R. cirrata and R. peckorum). The greater Perth region is an important biogeographic overlap zone for all four Swan Coastal Plain species, where the ranges of two endemic coastal species join the northern and south-western limits of the ranges of R. peckorum and R. cirrata, respectively. Most species of Raveniella were found to occupy long, highly autapomorphic molecular branches exhibiting little intraspecific variation, and an analysis of ITS2 rRNA secondary structures among different species of Raveniella revealed the presence of an extraordinary hypervariable helix, ranging from 31 to over 400 nucleotides in length.


Acknowledgements

This research contributed to a Doctor of Philosophy (Ph.D.) degree by M. Rix, and was funded by the Australian Biological Resources Study (ABRS) Ph.D. Research Scholarship (2006–2009), the School of Animal Biology at the University of Western Australia, and the Department of Terrestrial Zoology at the Western Australian Museum. Many colleagues generously provided specimens for study, but special thanks to Norman Platnick and Louis Sorkin (AMNH), and Petra Sierwald and James Boone (FMC) for the loan of large numbers of Australasian micropholcommatid specimens, and to Norman Platnick for authorising the transfer of AMNH specimens to the Australian and Western Australian Museums. Robert Raven and Owen Seeman (QMB), Graham Milledge (AMS) and Gonzalo Giribet (MCZ) are also thanked for the loan of additional taxa. Collections were made under permit in Western Australia, with licences issued by the Western Australian Department of Environment and Conservation (Licence Nos. SF005357, SF005814, SF006247). Gonzalo Giribet, Nikolaj Scharff, Gustavo Hormiga and four anonymous referees are thanked for making helpful comments on earlier drafts of this manuscript.


References


Bond J. E., Stockman A. K. (2008) An integrative method for delimiting cohesion species: finding the population–species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring. Systematic Biology 57, 628–646.
CrossRef | PubMed | open url image1

Bond J. E., Hedin M. C., Ramírez M. G., Opells B. D. (2001) Deep molecular divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus. Molecular Ecology 10, 899–910.
CrossRef | PubMed | open url image1

Brown R. W. (1956). ‘Composition of Scientific Words: A Manual of Methods and a Lexicon of Materials for the Practice of Logotechnics.’ (Smithsonian Books: Washington, DC.)

Browne-Cooper R., Maryan B. (1992) Notes on the status of the skink lizard Ctenotus lancelini on Lancelin Island. Western Australian Naturalist 19, 63–65. open url image1

Burbidge A. A., Kutchling G. (2007) The western swamp tortoise – 50 years on. Landscope 22, 24–29. open url image1

Coleman A. W. (2007) Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Research 35, 3322–3329.
CrossRef | PubMed | open url image1

Crews S. C., Hedin M. (2006) Studies of morphological and molecular phylogenetic divergence in spiders (Araneae: Homalonychus) from the American southwest, including divergence along the Baja California Peninsula. Molecular Phylogenetics and Evolution 38, 470–487.
CrossRef | PubMed | open url image1

Dadour I. R., Johnson M. S. (1983) Genetic differentiation, hybridization and reproductive isolation in Mygalopsis marki Bailey (Orthoptera: Tettigoniidae). Australian Journal of Zoology 31, 353–360.
CrossRef | open url image1

Department of the Environment Water, Heritage and the Arts (2009). Ctenotus lancelini. In ‘Species Profile and Threats Database, Department of the Environment, Water, Heritage and the Arts, Canberra’. Available at http://www.environment.gov.au/sprat [Accessed 26 January 2009].

Edward K. L., Harvey M. S. (2010) A review of the Australian millipede genus Atelomastix (Diplopoda: Spirostreptida: Iulomorphidae). Zootaxa 2371, 1–63. open url image1

Edwards D. L., Roberts J. D., Keogh J. S. (2007) Impact of Plio-Pleistocene arid cycling on the population history of a southwestern Australian frog. Molecular Ecology 16, 2782–2796.
CrossRef | PubMed | open url image1

Edwards D. L., Roberts J. D., Keogh J. S. (2008) Climatic fluctuations shape the phylogeography of a mesic direct-developing frog from the south-western Australian biodiversity hotspot. Journal of Biogeography 35, 1803–1815.
CrossRef | open url image1

Felsenstein J. (1985) Confidence limits on phylogenies – an approach using the bootstrap. Evolution 39, 783–791.
CrossRef | open url image1

Forster R. R. (1959) The spiders of the family Symphytognathidae. Transactions of the Royal Society of New Zealand 86, 269–329. open url image1

Forster R. R., Platnick N. I. (1981) A textricellid spider from Chile (Araneae, Textricellidae). Bulletin of the American Museum of Natural History 170, 263–270. open url image1

Forster R. R., Platnick N. I. (1984) A review of the archaeid spiders and their relatives, with notes on the limits of the superfamily Palpimanoidea (Arachnida, Araneae). Bulletin of the American Museum of Natural History 178, 1–106. open url image1

Harvey M. S. (1996) The biogeography of Gondwanan pseudoscorpions (Arachnida). Revue Suisse de Zoologie vol. hors série, 255–264. open url image1

Harvey M. S. (2002a) Short-range endemism among the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
CrossRef | open url image1

Harvey M. S. (2002b) A new species of Austrarchaea (Araneae: Archaeidae) from Western Australia. Records of the Western Australian Museum 21, 35–37. open url image1

Harvey M. S., Waldock J. M., Guthrie N. A., Durrant B. J., McKenzie N. L. (2004) Patterns of composition of ground-dwelling araneomorph spider communities in the Western Australian Wheatbelt. Records of the Western Australian Museum Supplement No. 67, 257–291. open url image1

Harvey M. S., Berry O., Edward K. L., Humphreys G. (2008) Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia. Invertebrate Systematics 22, 167–194.
CrossRef | open url image1

Hedin M. C. (1997) Speciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): inferences from geographic-based sampling. Evolution 51, 1929–1945.
CrossRef | open url image1

Hendrixson B. E., Bond J. E. (2005) Testing species boundaries in the Antrodiaetus unicolor complex (Araneae: Mygalomorphae: Antrodiaetidae): “paraphyly” and cryptic diversity. Molecular Phylogenetics and Evolution 36, 405–416.
CrossRef | PubMed | open url image1

Hickman V. V. (1944) On some new Australian Apneumonomorphae with notes on their respiratory system. Papers and Proceedings of the Royal Society of Tasmania 1944, 179–195. open url image1

Hickman V. V. (1945) A new group of apneumone spiders. Transactions of the Connecticut Academy of Arts and Sciences 36, 135–148. open url image1

Hill A., Johnson M. S., Merrifield H. (1983) An electrophoretic and morphological examination of Bothriembryon kendricki (Pulmonata: Bulimulidae), a new species previously considered conspecific with B. bulla (Menke). Australian Journal of Zoology 31, 227–242.
CrossRef | open url image1

Hong-Chun P., Kai-Ya Z., Da-Xiang S., Yang Q. (2004) Phylogenetic placement of the spider genus Nephila (Araneae: Araneoidea) inferred from rRNA and MaSp1 gene sequences. Zoological Science 21, 343–351.
CrossRef | PubMed | open url image1

Hopper S. D., Gioia P. (2004) The Southwest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology Evolution and Systematics 35, 623–650.
CrossRef | open url image1

Hopper S. D. , Harvey M. S. , Chappill J. A. , Main A. R. , and Main B. Y. (1996). The Western Australian biota as Gondwanan heritage – a review. In ‘Gondwanan Heritage. Past Present and Future of the Western Australian Biota’. (Eds S. D. Hopper, J. A. Chappill, M. S. Harvey and A. S. George.) pp. 1–46. (Surrey Beatty & Sons: Chipping Norton, NSW.)

Huelsenbeck J. P., Ronquist F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England) 17, 754–755.
CrossRef | PubMed | open url image1

Iredale T. (1939) A review of the land Mollusca of Western Australia. Records of the Western Australian Museum and Art Gallery 2, 1–88. open url image1

Keller A., Schleicher T., Schultz J., Müller T., Dandekar T., Wolf M. (2009) 5.8S–28S rRNA interaction and HMM-based ITS2 annotation. Gene 430, 50–57.
CrossRef | PubMed | open url image1

Kendrick G. W., Wyrwoll K.-H., Szabo B. J. (1991) Pliocene–Pleistocene coastal events and history along the western margin of Australia. Quaternary Science Reviews 10, 419–439.
CrossRef | open url image1

Littlejohn M. J. (1957) A new species of frog of the genus Crinia. Western Australian Naturalist 6, 18–23. open url image1

Longhorn S. J., Nicholas M., Chuter J., Vogler A. P. (2007) The utility of molecular markers from non-lethal DNA samples of the CITES II protected “tarantula” Brachypelma vagans (Araneae, Theraphosidae). The Journal of Arachnology 35, 278–292.
CrossRef | open url image1

Main B. Y. (1996) Terrestrial invertebrates in south-west Australian forests: the role of relict species and habitats in reserve design. Journal of the Royal Society of Western Australia 79, 277–280. open url image1

Main B. Y. (1999). Biological anachronisms among trapdoor spiders reflect Australia’s environmental changes since the Mesozoic. In ‘The Other 99%. The Conservation and Biodiversity of Invertebrates’. (Eds W. Ponder and D. Lunney.) pp. 236–245. (Transactions of the Royal Zoological Society of New South Wales: Mosman, NSW.)

Main B. Y., Harvey M. S., Waldock J. M. (2002) The distribution of the Western Australian pill millipede, Cynotelopus notabilis Jeekel (Sphaerotheriiidae). Records of the Western Australian Museum 20, 383–385. open url image1

Mast A. R., Jones E. H., Havery S. P. (2005) An assessment of old and new DNA sequence evidence for the paraphyly of Banksia with respect to Dryandra (Proteaceae). Australian Systematic Botany 18, 75–88.
CrossRef | open url image1

Mathews D. H., Disney M. D., Childs J. L., Schroeder S. J., Zuker M., Turner D. H. (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proceedings of the National Academy of Sciences of the United States of America 101, 7287–7292.
CrossRef | PubMed | open url image1

Moir M. L., Brennan K. E. C., Harvey M. S. (2009) Diversity, endemism and species turnover of millipedes within the south-western Australian global biodiversity hotspot. Journal of Biogeography 36, 1958–1971.
CrossRef |
open url image1

Morgan M. J., Roberts J. D., Keogh J. S. (2007) Molecular phylogenetic dating supports an ancient endemic speciation model in Australia’s biodiversity hotspot. Molecular Phylogenetics and Evolution 44, 371–385.
CrossRef | PubMed | open url image1

Murienne J., Pellens R., Budinoff R. B., Wheeler W. C., Grandcolas P. (2008) Phylogenetic analysis of the endemic New Caledonian cockroach Lauraesilpha. Testing competing hypotheses of diversification. Cladistics 24, 802–812.
CrossRef | open url image1

Myers N., Mittermeier R. A., Mittermeier C. G., da Fonseca G. A. B., Kent J. (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
CrossRef | PubMed | open url image1

Nylander J. A. A. (2004). ‘MrModeltest Version 2.’ Available at http://www.abc.se/~nylander/ [Accessed on 26 January 2009].

Posada D., Crandall K. A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
CrossRef | PubMed | open url image1

Read K., Keogh J. S., Scott I. A. W., Roberts J. D., Doughty P. (2001) Molecular phylogeny of the Australian frog genera Crinia, Geocrinia, and allied taxa (Anura: Myobatrachidae). Molecular Phylogenetics and Evolution 21, 294–308.
CrossRef | PubMed | open url image1

Reid A. (2002) Western Australian Onychophora (Peripatopsidae): a new genus, Kumbadjena, for a southern species-complex. Records of the Western Australian Museum 21, 129–155. open url image1

Rix M. G. (2006) Systematics of the Australasian spider family Pararchaeidae (Arachnida: Araneae). Invertebrate Systematics 20, 203–254.
CrossRef | open url image1

Rix M. G. (2008) A new species of Micropholcomma (Araneae: Araneoidea: Micropholcommatidae) from Western Australia. Records of the Western Australian Museum 24, 343–348. open url image1

Rix M. G., Harvey M. S. (2010) The spider family Micropholcommatidae (Arachnida: Araneae: Araneoidea): a relimitation and revision at the generic level. ZooKeys 36, 1–321.
CrossRef | open url image1

Rix M. G., Harvey M. S., Roberts J. D. (2008) Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S). Molecular Phylogenetics and Evolution 46, 1031–1048.
CrossRef | PubMed | open url image1

Ronquist F., Huelsenbeck J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 1572–1574.
CrossRef | PubMed | open url image1

Rozen S. , and Skaletsky H. J. (2000). Primer3 on the WWW for general users and for biologist programmers. In ‘Bioinformatics Methods and Protocols: Methods in Molecular Biology’. (Eds S. Krawetz and S. Misener.) pp. 365–386. (Humana Press: Totowa, NJ.)

Sanmartín I., Ronquist F. (2004) Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology 53, 216–243.
CrossRef | PubMed | open url image1

Schnare M. N., Damberger S. H., Gray M. W., Gutell R. R. (1996) Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23 S-like) ribosomal RNA. Journal of Molecular Biology 256, 701–719.
CrossRef | PubMed | open url image1

Schultz J., Wolf M. (2009) ITS2 sequence-structure analysis in phylogenetics: a how-to manual for molecular systematics. Molecular Phylogenetics and Evolution 52, 520–523.
CrossRef | PubMed | open url image1

Seddon G. (1972). ‘Sense of Place: A Response to an Environment, the Swan Coastal Plain, Western Australia.’ (University of Western Australia Press: Perth.)

Semeniuk V., Semeniuk C. A. (2006) Sedimentary fill of basin wetlands, central Swan Coastal Plain, southwestern Australia. Part 2: distribution of sediment types and their stratigraphy. Royal Society of Western Australia 89, 185–220. open url image1

Simon C., Frati F., Beckenbach A., Crespi B., Liu H., Flook P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701. open url image1

Sparks J. S., Smith W. L. (2004) Phylogeny and biogeography of the Malagasy and Australasian rainbowfishes (Teleostei: Melanotaenioidei): Gondwanan vicariance and evolution in freshwater. Molecular Phylogenetics and Evolution 33, 719–734.
CrossRef | PubMed | open url image1

Stockman A. K., Bond J. E. (2008) A taxonomic review of the trapdoor spider genus Promyrmekiaphila Schenkel (Araneae, Mygalomorphae, Cyrtaucheniidae, Euctenizinae). Zootaxa 1823, 25–41. open url image1

Swofford D. L. (2002). ‘PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10.’ (Sinauer Associates: Sunderland, MA.)

Tapsell P., Newsome D., Bastian L. (2003) Origin of yellow sand from Tamala Limestone on the Swan Coastal Plain, Western Australia. Australian Journal of Earth Sciences 50, 331–342.
CrossRef | open url image1

Tautz D., Hancock J. M., Webb D. A., Tautz C., Dover G. A. (1988) Complete sequences of the rRNA genes of Drosophila melanogaster. Molecular Biology and Evolution 5, 366–376.
PubMed |
open url image1

Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
CrossRef | PubMed | open url image1

Wardell-Johnson G., Roberts J. G. (1993) Biogeographic barriers in a subdued landscape: the distribution of the Geocrinia rosea (Anura: Myobatrachidae) complex in south-western Australia. Journal of Biogeography 20, 95–108.
CrossRef | open url image1

White T. J. , Bruns T. , Lee S. , and Taylor J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In ‘PCR Protocols: A Guide to Methods and Applications’. (Eds M. Innis, D. Gelfand, J. Swinksy and T. White.) pp. 315–322. (Academic Press: San Diego, CA.)

Wuyts J., De Rijk P., Van de Peer Y., Pison G., Rousseeuw P., De Wachter R. (2000) Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. Nucleic Acids Research 28, 4698–4708.
CrossRef | PubMed | open url image1








Rent Article (via Deepdyve) Export Citation Cited By (7)