Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography

Phylogenetic analysis using rDNA reveals polyphyly of Oplophoridae (Decapoda : Caridea)

Tin-Yam Chan A C , Ho Chee Lei B C , Chi Pang Li B and Ka Hou Chu B D

A Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan.

B Simon F. S. Li Marine Science Laboratory, Department of Biology, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong.

C These two authors contributed equally to this work.

D Corresponding author. Email:

Invertebrate Systematics 24(2) 172-181
Submitted: 6 December 2009  Accepted: 28 April 2010   Published: 29 June 2010


Molecular phylogenetic analysis on nine of the ten genera in the caridean family Oplophoridae Dana, 1852, as well as 14 other caridean families using mitochondrial 16S and nuclear 18S rRNA genes, does not support the monophyletic status of Oplophoridae. Two disparate groups of oplophorids are revealed, with different morphological characters and ecology. It is proposed that the family Oplophoridae is restricted to the three genera Oplophorus, Systellaspis and Janicella. These three genera tend to be distributed in shallower water than the other oplophorid genera, and can also be distinguished from them by certain morphological characters. They have a thicker integument, superficial cuticular photophores and larger eyes, and the molar process of their mandibles is greatly reduced or bears a deep channel. The family Acanthephyridae Bate, 1888 is resurrected for the other seven genera, which are generally distributed in deeper water and are characterised by red soft integument, no cuticular photophores, smaller eyes and well-developed molar process of the mandibles without a deep channel. The relationships between these two families and other caridean families could not be clearly resolved in this study.


Apakupakul K. Siddall M. E. Burreson E. M. 1999 Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. Molecular Phylogenetics and Evolution 12 350 359 doi:10.1006/mpev.1999.0639

Balss H. (1957). Decapoda. VIII. Systematik. In ‘Klassen und Ordnungen des Tierreichs. Funfter Band, 1. Abteilung 7, Buch 12’. (Ed. H. G. Bronns.) pp. 1505-1672. (Winter: Leipzig.)

Bate C. S. (1888). Report on the Crustacea Macrura collected by H.M.S. Challenger during the Years 1873–76. In ‘Zoology. Report on the Scientific Results of the Voyage of H.M.S. Challenger During the Years 1873–76 Under the Command of Captain George S. Nares, R.N., F.R.S. and the Late Captain Frank Tourle Thomson, R.N. Wyville Thomson’. Vol. 24, i–xc. (Eds C. and J. Murray.) pp. 1–942. (Neill and Company: Edinburgh.)

Bauer R. T. (2004). ‘Remarkable Shrimps: Adaptations and Natural History of the Carideans.’ (University of Oklahoma Press: Norman.)

Borradaile L. A. 1907 On the classification of the decapod crustaceans. The Annals and Magazine of Natural History, series 7 19 457 486

Bracken H. D. , De Grave S. , and Felder D. L. (2009). Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda). In ‘Decapod Crustacean Phylogenetics. Crustacean Issues 18’. (Eds J. W. Martin, K. A. Crandall and D. L. Felder.) pp. 274-300. (CRC Press: Boca Raton, FL.)

Burkenroad M. D. 1939 Some remarks upon non-peneid Crustacea Decapoda. The Annals and Magazine of Natural History, series 11 3 310 318

Camin J. H. Sokal R. R. 1965 A method for deducing branching sequences in phylogeny. Evolution 19 311 326 doi:10.2307/2406441

Chace F. A. Jr 1986 The caridean shrimps (Crustacea: Decapoda) of the Albatross Philippine Expedition, 1907–1910, Part 4: Families Oplophoridae and Nematocarcinidae. Smithsonian Contributions to Zoology 432 1 82

Chace F. A. Jr 1992 On the classification of the Caridea (Decapoda). Crustaceana 63 70 80 doi:10.1163/156854092X00299

Chan T. Y. Yu H. P. 1986 The deep-sea shrimps of the family Oplophoridae (Crustacea: Decapoda) from Taiwan. Asian Marine Biology 3 89 99

Christoffersen M. L. 1986 Phylogenetic relationships between Oplophoridae, Atyidae, Pasiphaeidae, Alvinocarididae fam. n., Bresiliidae, Psalidopodidae and Disciadidae (Crustacea Caridea Atyoidea). Boletim de Zoologia. Universidade de Sao Paulo 10 273 281

Christoffersen M. L. 1990 A new superfamily classification of the Caridea (Crustacea, Pleocyemata) based on phylogenetic pattern. Zeitschrift Fuer Zoologische Systematik und Evolutionsforschung 28 94 106

Crandall K. A. Fitzpatrick J. E. Jr 1996 Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Systematic Biology 45 1 26

Dana J. D. 1852 Conspectus Crustaceorum quae in Orbis Terrarum circumnavigatione, Carolo Wilkes e Classe Reipublicae Foederatae Duce, lexit et descripsit. Proceedings of the Academy of Natural Sciences of Philadelphia 6 10 28

De Grave S. Pentcheff N. D. Ahyong S. Chan T.-Y. Crandall K. A. et al 2009 A classification of living and fossil genera of decapod crustaceans. The Raffles Bulletin of Zoology 21 suppl. 1 109

Drummond A. J. Rambaut A. 2007 BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7 214 doi:10.1186/1471-2148-7-214

Felsenstein J. 1981 Evolutionary tree from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17 368 376 doi:10.1007/BF01734359

Felsenstein J. 1985 Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783 791 doi:10.2307/2408678

Forest J. 1977 Un groupement injustifie: la superfamille des Bresilioidea. Remarques critiques sur le statut des familles sous ce nom (Crustacea Decapoda Caridea). Bulletin du Muséum national d’Histoire naturelle, Zoologie, Paris, 3e série 332 869 888

Frank T. M. Case J. F. 1988 Visual spectral sensitivities of bioluminescent deep-sea crustaceans. The Biological Bulletin 175 261 273 doi:10.2307/1541567

Gascuel O. 1997 BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution 14 685 695

Herring P. J. 1985 Bioluminescence in the Crustacea. Journal of Crustacean Biology 5 557 573 doi:10.2307/1548235

Holthuis L. B. 1955 The recent genera of the caridean and stenopodidean shrimps (Class Crustacea, Order Decapoda, Super-section Natantia) with keys for their determination. Zoologische Verhandelingen 26 1 157

Holthuis L. B. (1993). ‘The Recent Genera of the Caridean and Stenopodidean Shrimps (Crustacea, Decapoda) with an Appendix in the Order Amphionidacea.’ (National Natuurhistorisch Museum: Leiden.)

Katoh T. 2008 Improve accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 9 212 doi:10.1186/1471-2105-9-212

Kumar S. Tamura K. Nei M. 2004 MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5 150 163 doi:10.1093/bib/5.2.150

Lin C. W. Chan T. Y. 2001 First record of the deep-sea shrimp genus Ephyrina Smith, 1885 (Crustacea: Decapoda: Oplophoridae) from Taiwan, with a description of a new subspecies. Crustaceana 74 183 192 doi:10.1163/156854001750096283

Martin J. W. , and Davis G. E. (2001). ‘An Updated Classification of the Recent Crustacea.’ (Ed. K.V. Brown.) Natural History Museum of the Los Angeles County, Science Series 39.

Medlin L. Elwood H. J. Stickel S. Sogin M. L. 1988 The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71 491 499 doi:10.1016/0378-1119(88)90066-2

Posada D. Crandall K. A. 1998 Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14 817 818 doi:10.1093/bioinformatics/14.9.817

Rambaut A. , and Drummond A. J. (2007). Tracer v1.4, Available at [Verified 7 May 2010]

Saitou N. Nei M. 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4 406 425

Shimodaira H. 2002 An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51 492 508 doi:10.1080/10635150290069913

Shimodaira H. Hasegawa M. 1999 Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16 1114 1116

Shimodaira H. Hasegawa M. 2001 CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics Applications Note 17 1246 1247

Simon C. Frati F. Beckenbach A. Crespi B. Liu H. Flook P. 1994 Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87 652 701

Stamatakis A. 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 2688 2690 doi:10.1093/bioinformatics/btl446

Swofford D. L. (2002). ‘PAUP* 4.0: Phylogenetic Analysis Using Parsimony (*and other methods).’ (Sinauer Associates: Sunderland, MA.)

Thompson J. R. (1967). Comments on phylogeny of section Caridea (Decapoda Natantia) and the phylogenetic importance of the Oplophoroidea. In ‘Proceedings of the Symposium on Crustacea, Marine Biological Association of India Part 1’. pp. 314-326.

Tsang L. M. Ma K. Y. Ahyong S. T. Chan T. Y. Chu K. H. 2008 Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia. Molecular Phylogenetics and Evolution 48 359 368 doi:10.1016/j.ympev.2008.04.009

Welsh J. H. Chace F. A. Jr 1937 Eyes of deep sea crustaceans. The Biological Bulletin 72 57 74 doi:10.2307/1537540

Export Citation Cited By (10)