Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogenetic analysis using rDNA reveals polyphyly of Oplophoridae (Decapoda : Caridea)

Tin-Yam Chan A C , Ho Chee Lei B C , Chi Pang Li B and Ka Hou Chu B D
+ Author Affliations
- Author Affliations

A Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan.

B Simon F. S. Li Marine Science Laboratory, Department of Biology, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong.

C These two authors contributed equally to this work.

D Corresponding author. Email: kahouchu@cuhk.edu.hk

Invertebrate Systematics 24(2) 172-181 https://doi.org/10.1071/IS09049
Submitted: 6 December 2009  Accepted: 28 April 2010   Published: 29 June 2010

Abstract

Molecular phylogenetic analysis on nine of the ten genera in the caridean family Oplophoridae Dana, 1852, as well as 14 other caridean families using mitochondrial 16S and nuclear 18S rRNA genes, does not support the monophyletic status of Oplophoridae. Two disparate groups of oplophorids are revealed, with different morphological characters and ecology. It is proposed that the family Oplophoridae is restricted to the three genera Oplophorus, Systellaspis and Janicella. These three genera tend to be distributed in shallower water than the other oplophorid genera, and can also be distinguished from them by certain morphological characters. They have a thicker integument, superficial cuticular photophores and larger eyes, and the molar process of their mandibles is greatly reduced or bears a deep channel. The family Acanthephyridae Bate, 1888 is resurrected for the other seven genera, which are generally distributed in deeper water and are characterised by red soft integument, no cuticular photophores, smaller eyes and well-developed molar process of the mandibles without a deep channel. The relationships between these two families and other caridean families could not be clearly resolved in this study.


Acknowledgements

We sincerely thank A. Crosnier and R. Cléva of the Muséum national d’Histoire naturelle, Paris (MNHN) for the sample of Hymenodora glacialis. The sample of Discias sp. was collected by the SANTO 2006 expedition. The SANTO 2006 expedition to Vanuatu was organised by MNHN, Pro Natura International (PNI) and Institut de Recherche pour le Développement (IRD). The expedition operated under a permit granted to P. Bouchet of MNHN by the Environment Unit of the Government of Vanuatu. The Marine Biodiversity part of the expedition, a part of Census of Marine Life’s CReefs programme, was specifically funded by grants from the Total Foundation and the Sloan Foundation. The specimen of Alvinocaris longirostris was obtained through the courtesy of Shinji Tsuchida of JAMSTEC, Japan. All material has been collected under appropriate collection permits and approved ethics guidelines. We are indebted to D. Wilmshurst of The Chinese University of Hong Kong for his editorial comments on the manuscript. This work was supported by grants from the National Science Council, Taiwan, R.O.C., Academia Sinica and the Center for Marine Bioenvironment and Biotechnology of the National Taiwan Ocean University. The molecular analysis was supported by a grant from the Research Grants Council, Hong Kong SAR, China (project no. CUHK4419/04M).


References


Apakupakul K., Siddall M. E., Burreson E. M. (1999) Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. Molecular Phylogenetics and Evolution 12, 350–359.
CrossRef | CAS | PubMed | open url image1

Balss H. (1957). Decapoda. VIII. Systematik. In ‘Klassen und Ordnungen des Tierreichs. Funfter Band, 1. Abteilung 7, Buch 12’. (Ed. H. G. Bronns.) pp. 1505-1672. (Winter: Leipzig.)

Bate C. S. (1888). Report on the Crustacea Macrura collected by H.M.S. Challenger during the Years 1873–76. In ‘Zoology. Report on the Scientific Results of the Voyage of H.M.S. Challenger During the Years 1873–76 Under the Command of Captain George S. Nares, R.N., F.R.S. and the Late Captain Frank Tourle Thomson, R.N. Wyville Thomson’. Vol. 24, i–xc. (Eds C. and J. Murray.) pp. 1–942. (Neill and Company: Edinburgh.)

Bauer R. T. (2004). ‘Remarkable Shrimps: Adaptations and Natural History of the Carideans.’ (University of Oklahoma Press: Norman.)

Borradaile L. A. (1907) On the classification of the decapod crustaceans. The Annals and Magazine of Natural History, series 7 19, 457–486. open url image1

Bracken H. D. , De Grave S. , and Felder D. L. (2009). Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda). In ‘Decapod Crustacean Phylogenetics. Crustacean Issues 18’. (Eds J. W. Martin, K. A. Crandall and D. L. Felder.) pp. 274-300. (CRC Press: Boca Raton, FL.)

Burkenroad M. D. (1939) Some remarks upon non-peneid Crustacea Decapoda. The Annals and Magazine of Natural History, series 11 3, 310–318. open url image1

Camin J. H., Sokal R. R. (1965) A method for deducing branching sequences in phylogeny. Evolution 19, 311–326.
CrossRef | open url image1

Chace F. A. (1986) The caridean shrimps (Crustacea: Decapoda) of the Albatross Philippine Expedition, 1907–1910, Part 4: Families Oplophoridae and Nematocarcinidae. Smithsonian Contributions to Zoology 432, 1–82. open url image1

Chace F. A. (1992) On the classification of the Caridea (Decapoda). Crustaceana 63, 70–80.
CrossRef | open url image1

Chan T. Y., Yu H. P. (1986) The deep-sea shrimps of the family Oplophoridae (Crustacea: Decapoda) from Taiwan. Asian Marine Biology 3, 89–99. open url image1

Christoffersen M. L. (1986) Phylogenetic relationships between Oplophoridae, Atyidae, Pasiphaeidae, Alvinocarididae fam. n., Bresiliidae, Psalidopodidae and Disciadidae (Crustacea Caridea Atyoidea). Boletim de Zoologia. Universidade de Sao Paulo 10, 273–281. open url image1

Christoffersen M. L. (1990) A new superfamily classification of the Caridea (Crustacea, Pleocyemata) based on phylogenetic pattern. Zeitschrift Fuer Zoologische Systematik und Evolutionsforschung 28, 94–106. open url image1

Crandall K. A., Fitzpatrick J. E. (1996) Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Systematic Biology 45, 1–26. open url image1

Dana J. D. (1852) Conspectus Crustaceorum quae in Orbis Terrarum circumnavigatione, Carolo Wilkes e Classe Reipublicae Foederatae Duce, lexit et descripsit. Proceedings of the Academy of Natural Sciences of Philadelphia 6, 10–28. open url image1

De Grave S., Pentcheff N. D., Ahyong S., Chan T.-Y., Crandall K. A. , et al. (2009) A classification of living and fossil genera of decapod crustaceans. The Raffles Bulletin of Zoology 21(suppl.), 1–109. open url image1

Drummond A. J., Rambaut A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
CrossRef | PubMed | open url image1

Felsenstein J. (1981) Evolutionary tree from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17, 368–376.
CrossRef | CAS | PubMed | open url image1

Felsenstein J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
CrossRef | open url image1

Forest J. (1977) Un groupement injustifie: la superfamille des Bresilioidea. Remarques critiques sur le statut des familles sous ce nom (Crustacea Decapoda Caridea). Bulletin du Muséum national d’Histoire naturelle, Zoologie, Paris, 3e série 332, 869–888. open url image1

Frank T. M., Case J. F. (1988) Visual spectral sensitivities of bioluminescent deep-sea crustaceans. The Biological Bulletin 175, 261–273.
CrossRef | open url image1

Gascuel O. (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution 14, 685–695.
CAS | PubMed |
open url image1

Herring P. J. (1985) Bioluminescence in the Crustacea. Journal of Crustacean Biology 5, 557–573.
CrossRef | open url image1

Holthuis L. B. (1955) The recent genera of the caridean and stenopodidean shrimps (Class Crustacea, Order Decapoda, Super-section Natantia) with keys for their determination. Zoologische Verhandelingen 26, 1–157. open url image1

Holthuis L. B. (1993). ‘The Recent Genera of the Caridean and Stenopodidean Shrimps (Crustacea, Decapoda) with an Appendix in the Order Amphionidacea.’ (National Natuurhistorisch Museum: Leiden.)

Katoh T. (2008) Improve accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics 9, 212.
CrossRef | PubMed | open url image1

Kumar S., Tamura K., Nei M. (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5, 150–163.
CrossRef | CAS | PubMed | open url image1

Lin C. W., Chan T. Y. (2001) First record of the deep-sea shrimp genus Ephyrina Smith, 1885 (Crustacea: Decapoda: Oplophoridae) from Taiwan, with a description of a new subspecies. Crustaceana 74, 183–192.
CrossRef | open url image1

Martin J. W. , and Davis G. E. (2001). ‘An Updated Classification of the Recent Crustacea.’ (Ed. K.V. Brown.) Natural History Museum of the Los Angeles County, Science Series 39.

Medlin L., Elwood H. J., Stickel S., Sogin M. L. (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499.
CrossRef | CAS | PubMed | open url image1

Posada D., Crandall K. A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817–818.
CrossRef | CAS | PubMed | open url image1

Rambaut A. , and Drummond A. J. (2007). Tracer v1.4, Available at http://beast.bio.ed.ac.uk/Tracer [Verified 7 May 2010]

Saitou N., Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
CAS | PubMed |
open url image1

Shimodaira H. (2002) An approximately unbiased test of phylogenetic tree selection. Systematic Biology 51, 492–508.
CrossRef | PubMed | open url image1

Shimodaira H., Hasegawa M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16, 1114–1116.
CAS |
open url image1

Shimodaira H., Hasegawa M. (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics Applications Note 17, 1246–1247.
CAS |
open url image1

Simon C., Frati F., Beckenbach A., Crespi B., Liu H., Flook P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 652–701. open url image1

Stamatakis A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
CrossRef | CAS | PubMed | open url image1

Swofford D. L. (2002). ‘PAUP* 4.0: Phylogenetic Analysis Using Parsimony (*and other methods).’ (Sinauer Associates: Sunderland, MA.)

Thompson J. R. (1967). Comments on phylogeny of section Caridea (Decapoda Natantia) and the phylogenetic importance of the Oplophoroidea. In ‘Proceedings of the Symposium on Crustacea, Marine Biological Association of India Part 1’. pp. 314-326.

Tsang L. M., Ma K. Y., Ahyong S. T., Chan T. Y., Chu K. H. (2008) Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia. Molecular Phylogenetics and Evolution 48, 359–368.
CrossRef | CAS | PubMed | open url image1

Welsh J. H., Chace F. A. (1937) Eyes of deep sea crustaceans. The Biological Bulletin 72, 57–74.
CrossRef | open url image1








Rent Article (via Deepdyve) Export Citation Cited By (10)