CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

 

Article << Previous     |     Next >>   Contents Vol 10(4)

Aggregation kinetics and surface charge of CuO nanoparticles: the influence of pH, ionic strength and humic acids

Vânia Serrão Sousa A and Margarida Ribau Teixeira A B

A Center for Environmental and Sustainability Research (CENSE), University of Algarve, Faculty of Sciences and Technology, Building 7, Campus de Gambelas, PT-8005-139 Faro, Portugal.
B Corresponding author. Email: mribau@ualg.pt

Environmental Chemistry 10(4) 313-322 http://dx.doi.org/10.1071/EN13001
Submitted: 2 January 2013  Accepted: 18 May 2013   Published: 5 August 2013


 
PDF (930 KB) $25
 Supplementary Material
 Export Citation
 Print
  

Environmental context. The high demand and use of nanomaterials in commercial products have led to increased concerns about their effect on the environment and human health. Because CuO nanoparticles are widely used in several products, it is necessary to understand and predict their behaviour and fate in the environment. We report a study on the aggregation and surface charge of CuO nanoparticles under environmentally relevant conditions to better predict the mobility and bioavailability of these materials in natural waters.

Abstract. In this study, the role of pH, ionic strength and humic acids (HAs) on the aggregation kinetics and surface charge of commercial copper oxide (CuO) nanoparticles were examined. Results show that the aggregation of CuO nanoparticles is favoured near pH 10, which was determined as the isoelectric point where the hydrodynamic diameter of the aggregates is the greatest. The aggregation of CuO nanoparticles is also ionic strength dependent. The increase in the ionic strength reduces the zeta potential, which leads to an increase in aggregation until 0.15 M. After this point an increase in ionic strength has no influence on aggregation. In the presence of HA for concentrations below 4 mg C L–1, aggregation was enhanced for acidic to neutral pH, whereas for higher concentrations, at all pH tested, aggregation does not change. The influence of HA on CuO nanoparticles is due to steric and electrostatic interactions. The sedimentation rates of CuO nanoparticles showed a relation between particle diameter and zeta potentials values confirmed by Derjaguin–Landau–Verwey–Overbeek calculations. The results obtained have important implications for predicting the stability and fate of CuO nanoparticles in natural water.

Additional keywords: copper oxide, DLVO theory, hydrodynamic diameter, sedimentation rate, zeta potential.


References

[1]  S. Klaine, P. Alvarez, G. Batley, T. Fernandes, R. Handy, D. Lyon, S. Mahendra, M. McLaughlin, J. Lead, Nanomaterials in the environment: behaviour, fate, bioavailability and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
CrossRef | CAS | PubMed |

[2]  J. Jiang, G. Oberdörster, P. Biwas, Characterization of size, surface charge, and agglomeration state of nanoparticles dispersions for toxicological studies. J. Nanopart. Res. 2009, 11, 77.
CrossRef | CAS |

[3]  H. Karlsson, P. Cronholm, J. Gustafsson, L. Möller, Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbpn nanotubes. Chem. Res. Toxicol. 2008, 21, 1726.
CrossRef | CAS | PubMed |

[4]  T. R. Society, Nanoscience and nanotechnologies: opportunities and uncertains 2004 (Clyvedon Press for The Royal Society and The Royal Academy of Engineering: Cardiff, UK). Available at http://www.raeng.org.uk/news/publications/list/reports/nanoscience_nanotechnologies.pdf [Verified 27 June 2013].

[5]  C. Pang, H. Selck, G. Banta, S. Misra, D. Berhanu, A. Dybowska, E. Valsami-Jones, V. Forbes, Bioaccumulation, toxicokinetics, and effects of copper from sediment spiked with aqueos Cu, nano-CuO or micro-CuO in the deposit-feeding snail, Potamopyrgus antipodarum. Environ. Toxicol. Chem. 2013, [Published online ahead of print 20 May 2013]
CrossRef | PubMed |

[6]  B. Nowack, T. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007, 150, 5.
CrossRef | CAS | PubMed |

[7]  M. Baalousha, Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci. Total Environ. 2009, 407, 2093.
CrossRef | CAS | PubMed |

[8]  J. Fabrega, S. Luoma, C. Tyler, T. Galloway, J. Lead, Silver nanoparticles: behaviour and effects in the aquatic environment. Environ. Int. 2011, 37, 517.
CrossRef | CAS | PubMed |

[9]  M. Baalousha, A. Manciulea, S. Cumberland, K. Kendall, J. Lead, Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ. Toxicol. Chem. 2008, 27, 1875.
CrossRef | CAS | PubMed |

[10]  S. Mylon, K. L. Chen, M. Elimelech, Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries. Langmuir 2004, 20, 9000.
CrossRef | CAS | PubMed |

[11]  Y. Zhang, Y. Chen, P. Westerhoff, J. Crittenden, Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res. 2009, 43, 4249.
CrossRef | CAS | PubMed |

[12]  A. Panacek, R. Prucek, D. Safarova, M. Dittrich, J. Richtrova, K. Benickova, R. Zboril, L. Kvitek, Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ. Sci. Technol. 2011, 45, 4974.
CrossRef | CAS | PubMed |

[13]  Y. Wang, Y. Li, K. Pennell, Influence of electrolyte species and concentration on the aggregation and transport of fullerene naoparticles in quartz sands. Environ. Toxicol. Chem. 2008, 27, 1860.
CrossRef | CAS | PubMed |

[14]  K. Chen, S. Mylon, M. Elimelech, Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ. Sci. Technol. 2006, 40, 1516.
CrossRef | CAS | PubMed |

[15]  I. Blinova, A. Ivask, M. Heinlaan, M. Mortimer, A. Kahru, Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ. Pollut. 2010, 158, 41.
CrossRef | CAS | PubMed |

[16]  C. Pang, H. Selck, S. Misra, D. Berhanu, A. Dybowska, E. Valsami-Jones, V. Forbes, Effects of sediment-associated copper to the deposit-feeding snail, Potamopyrgus antipodarum: a comparison of Cu added in aqueous form or as nano- and micro-CuO particles. Aquat. Toxicol. 2012, 106–107, 114.
CrossRef | PubMed |

[17]  J. Zhao, Z. Wang, X. Liu, X. Xie, K. Zhang, B. Xing, Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity. J. Hazard. Mater. 2011, 197, 304.
CrossRef | CAS | PubMed |

[18]  R. F. Domingos, N. Tufenkji, K. J. Wilkinson, Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ. Sci. Technol. 2009, 43, 1282.
CrossRef | CAS | PubMed |

[19]  T. Gomes, J. Pinheiro, I. Cancio, C. Pereira, C. Cardoso, M. Bebianno, Effects of copper nanoparticles exposure in the mussel Mytilus galloprovinciallis. Environ. Sci. Technol. 2011, 45, 9356.
CrossRef | CAS | PubMed |

[20]  T. Gomes, C. G. Pereira, C. Cardoso, J. P. Pinheiro, I. Cancio, M. J. Bebianno, Accumulation and toxicity of copper oxide nanoparticles in the digestive gland of Mytilus galloprovincialis. Aquat. Toxicol. 2012, 118–119, 72.
CrossRef | PubMed |

[21]  A. D. Eaton, L. S. Clesceri, E. W. Rice, A. E. Greenberg, Standard Methods for the Examination of Water and Wastewater, 21st edn 2005 (American Public Health Association, American Water Works Association, and Water Environment Federation: Washington, DC).

[22]  S. Hong, M. Elimelech, Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J. Membr. Sci. 1997, 132, 159.
CrossRef | CAS |

[23]  J. D. Hu, Y. Zevi, X.-M. Kou, J. Xiao, X.-J. Wang, Y. Jin, Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci. Total Environ. 2010, 408, 3477.
CrossRef | CAS | PubMed |

[24]  S. Li, W. Sun, A comparative study on aggregation/sedimentation of TiO2 nanoparticles in mono- and binary systems of fulvic acids and FeIII. J. Hazard. Mater. 2011, 197, 70.
CrossRef | CAS | PubMed |

[25]  A. A. Keller, H. Wang, D. Zhou, H. S. Lenihan, G. Cherr, B. J. Cardinale, R. Miller, Z. Ji, Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 2010, 44, 1962.
CrossRef | CAS | PubMed |

[26]  J. Gregory, Approximate expressions for retarded van der Waals interaction. J. Colloid Interface Sci. 1981, 83, 138.
CrossRef | CAS |

[27]  Y.-H. Shih, W.-S. Liu, Y. F. Su, Aggregation of stabilised TiO2 nanoparticles suspensios in the presence of inorganic ions. Environ. Toxicol. Chem. 2012, 31, 1693.
CrossRef | CAS | PubMed |

[28]  R. A. French, A. R. Jacobson, B. Kim, S. L. Isley, R. L. Penn, P. C. Baveye, Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ. Sci. Technol. 2009, 43, 1354.
CrossRef | CAS | PubMed |

[29]  S. Kim, K.-S. Lee, M. R. Zacharia, D. Lee, Three-dimensional off-lattice Monte Carlo simulations on a direct relation between experimental process parameters and fractal dimension of colloidal aggregates. J. Colloid Interface Sci. 2010, 344, 353.
CrossRef | CAS | PubMed |

[30]  B. D. Hall, D. Zanchet, D. Ugarte, Estimating nanoparticle size from diffraction measurements. J. Appl. Cryst. 2000, 33, 1335.
CrossRef | CAS |

[31]  S. Calvin, S. X. Luo, C. Caragianis-Broadbridge, J. K. McGuinness, E. Anderson, A. Lehman, K. H. Wee, S. A. Morrisonb, L. K. Kurihara, Comparison of extended X-ray absorption fine structure and Scherrer analysis of X-ray diffraction as methods for determining mean sizes of polydisperse nanoparticles. Appl. Phys. Lett. 2005, 87, 233102.
CrossRef |

[32]  D. Lee, J. Kim, B. G. Kim, A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J. Phys. Chem. B 2006, 110, 4320.

[33]  H. Chang, C. Jwo, C. Lo, T. Tsung, M. Kao, H. Lin, Rheology of CuO nanoparticle suspension prepared by ASNSS. Rev. Adv. Mater. Sci. 2005, 10, 128.
| CAS |

[34]  I. Morrison, S. Ross, Colloidal Dispersions: Suspensions, Emulsions and Foams 2002 (Wiley Interscience: New York).

[35]  F. von der Kammer, S. Ottofuelling, T. Hofmann, Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing. Environ. Pollut. 2010, 158, 3472.
CrossRef | CAS | PubMed |

[36]  P. Narong, A. James, Effect of pH on the zeta potential and turbidity of yeast suspensions. Colloids Surf. A 2006, 274, 130.
CrossRef | CAS |

[37]  D. Dickson, G. Liu, C. Li, G. Tachiev, Y. Cai, Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Sci. Total Environ. 2012, 419, 170.
CrossRef | CAS | PubMed |

[38]  S. Ottofuelling, F. Von der Kammer, T. Hofmann, Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behavior. Environ. Sci. Technol. 2011, 45, 10045.
CrossRef | CAS | PubMed |

[39]  T. Phenrat, N. Saleh, K. Sirk, R. Tilton, G. Lowry, Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 2007, 41, 284.
CrossRef | CAS | PubMed |

[40]  E. Illés, E. Tombacz, The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J. Colloid Interface Sci. 2006, 295, 115.
CrossRef | PubMed |

[41]  M. Filella, J. Buffle, Factors controlling the stability of sub micron colloids in nature. Colloids Surf. A 1993, 73, 255.
CrossRef | CAS |

[42]  K. Van Hoecke, K. A. C. Schamphelaere, P. Van der Meeren, G. Smagghe, C. R. Janssen, Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ. Pollut. 2011, 159, 970.
CrossRef | CAS | PubMed |

[43]  M. Moore, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 2006, 32, 967.
CrossRef | CAS | PubMed |

[44]  A. Baun, N. Hartmann, K. Grieger, K. Kusk, Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 2008, 17, 387.
CrossRef | CAS | PubMed |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016