CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

 

Article << Previous     |     Next >>   Contents Vol 10(4)

Arsenic binding to organic and inorganic sulfur species during microbial sulfate reduction: a sediment flow-through reactor experiment

Raoul-Marie Couture A B C F, Dirk Wallschläger D, Jérôme Rose E and Philippe Van Cappellen A B

A Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, USA.
B University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
C Norwegian Institute for Water Research, Gaustadalléen 21, N-0349 Oslo, Norway.
D Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 7B8, Canada.
E CNRS-Aix Marseille University UMR 7330 CEREGE, Europôle de l’Arbois, 13545 Aix-en-Provence, France.
F Corresponding author. Email: rmc@niva.no

Environmental Chemistry 10(4) 285-294 http://dx.doi.org/10.1071/EN13010
Submitted: 18 January 2013  Accepted: 26 May 2013   Published: 5 August 2013


 
 Full Text
 PDF (569 KB)
 Supplementary Material
 Export Citation
 Print
  

Environmental context. The use of water contaminated with arsenic for drinking and irrigation is linked to water and food borne diseases throughout the world. Although reducing conditions in soils and sediments are generally viewed as enhancing arsenic mobility in subsurface environments, we show they can actually promote As sequestration in the presence of reduced sulfur species and labile organic matter. We propose that sulfurisation of organic matter and subsequent binding of As to thiol groups may offer an innovative pathway for As remediation.

Abstract. Flow-through reactors (FTRs) were used to assess the mobility of arsenic under sulfate reducing conditions in natural, undisturbed lake sediments. The sediment slices in the FTRs were supplied continuously with inflow solutions containing sulfate and soluble AsIII or AsV and, after 3 weeks, also lactate. The experiment ran for a total of 8 weeks. The dissolved iron concentration, pH, redox potential (Eh), as well as aqueous As and sulfur speciation were monitored in the outflow solutions. In FTRs containing surface sediment enriched in labile organic matter (OM), microbial sulfate reduction led to an accumulation of organically bound S, as evidenced by X-ray absorption spectroscopy. For these FTRs, the inflowing dissolved As concentration of 20 μM was lowered by two orders of magnitude, producing outflow concentrations of 0.2 μM monothioarsenate and 0.1 μM arsenite. In FTRs containing sediment collected at greater depth, sulfide and zero-valent S precipitated as pyrite and elemental S, while steady-state outflow arsenite concentrations remained near 5 μM. The observations thus suggest that As sequestration is enhanced when sediment OM buffers the free sulfide and zero-valent S concentrations. An updated conceptual model for the fate of As in the anoxic As–C–S–Fe system is presented based on the results of this study.



References

[1]  D. Polya, L. Charlet, Environmental science: rising arsenic risk? Nat. Geosci. 2009, 2, 383.
CrossRef | CAS |

[2]  M. L. Polizzotto, B. D. Kocar, S. G. Benner, M. Sampson, S. Fendorf, Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 2008, 454, 505.
CrossRef | CAS | PubMed |

[3]  C. F. Harvey, C. H. Swartz, A. B. M. Badruzzaman, N. Keon-Blute, W. Yu, M. A. Ali, J. Jay, R. Beckie, V. Niedan, D. Brabander, P. M. Oates, K. N. Ashfaque, S. Islam, H. F. Hemond, M. F. Ahmed, Arsenic mobility and groundwater extraction in Bangladesh. Science 2002, 298, 1602.
CrossRef | CAS | PubMed |

[4]  K. S. Savage, T. N. Tingle, P. A. O’Day, G. A. Waychunas, D. K. Bird, Arsenic speciation in pyrite and secondary weathering phases, mother lode gold district, tuolumne county, california. Appl. Geochem. 2000, 15, 1219.
CrossRef | CAS |

[5]  M. Wolthers, L. Charlet, C. H. van Der Weijden, P. R. van der Linde, D. Rickard, Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochim. Cosmochim. Acta 2005, 69, 3483.
CrossRef | CAS |

[6]  B. C. Bostick, S. Fendorf, Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochim. Cosmochim. Acta 2003, 67, 909.
CrossRef | CAS |

[7]  T. J. Gallegos, S. P. Hyun, K. F. Hayes, Spectroscopic investigation of the uptake of arsenite from solution by synthetic mackinawite. Environ. Sci. Technol. 2007, 41, 7781.
CrossRef | CAS | PubMed |

[8]  J. A. Saunders, M. K. Lee, M. Shamsudduha, P. Dhakal, A. Uddin, M. T. Chowdury, K. M. Ahmed, Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters. Appl. Geochem. 2008, 23, 3205.
CrossRef | CAS |

[9]  C. F. Harvey, K. N. Ashfaque, W. Yu, A. B. M. Badruzzaman, M. A. Ali, P. M. Oates, H. A. Michael, R. B. Neumann, R. Beckie, S. Islam, M. F. Ahmed, Groundwater dynamics and arsenic contamination in bangladesh. Chem. Geol. 2006, 228, 112.
CrossRef | CAS |

[10]  R. T. Wilkin, R. G. Ford, Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland. Chem. Geol. 2006, 228, 156.
CrossRef | CAS |

[11]  P. A. O’Day, D. Vlassopoulos, R. Root, N. Rivera, The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl. Acad. Sci. USA 2004, 101, 13703.
CrossRef | CAS | PubMed |

[12]  B. C. Bostick, C. Chen, S. Fendorf, Arsenite retention mechanisms within estuarine sediments of Pescadero, CA. Environ. Sci. Technol. 2004, 38, 3299.
CrossRef | CAS | PubMed |

[13]  M. F. Kirk, E. E. Roden, L. J. Crossey, A. J. Brealey, M. N. Spilde, Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors. Geochim. Cosmochim. Acta 2010, 74, 2538.
CrossRef | CAS |

[14]  B. D. Kocar, T. Borch, S. Fendorf, Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochim. Cosmochim. Acta 2010, 74, 980.
CrossRef | CAS |

[15]  E. D. Burton, S. G. Johnston, R. T. Bush, Microbial sulfidogenesis in ferrihydrite-rich environments: effects on iron mineralogy and arsenic mobility. Geochim. Cosmochim. Acta 2011, 75, 3072.
CrossRef | CAS |

[16]  S. L. Saalfield, B. C. Bostick, Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environ. Sci. Technol. 2009, 43, 8787.
CrossRef | CAS | PubMed |

[17]  T. J. Gallegos, Y.-S. Han, K. F. Hayes, Model predictions of realgar precipitation by reaction of AsIII with synthetic mackinawite under anoxic conditions. Environ. Sci. Technol. 2008, 42, 9338.
CrossRef | CAS | PubMed |

[18]  E. Suess, A. C. Scheinost, B. C. Bostick, B. J. Merkel, D. Wallschläger, B. Planer-Friedrich, Discrimination of thioarsenites and thioarsenates by X-ray absorption spectroscopy. Anal. Chem. 2009, 81, 8318.
CrossRef | CAS | PubMed |

[19]  F. Wang, A. Tessier, Polysulfide and metal speciation in sediment porewaters of freshwater lakes. Environ. Sci. Technol. 2009, 43, 7252.
CrossRef | CAS | PubMed |

[20]  R. M. Couture, C. Gobeil, A. Tessier, Arsenic, iron and sulfur co-diagenesis in lake sediments. Geochim. Cosmochim. Acta 2010, 74, 1238.
CrossRef | CAS |

[21]  P. Langner, C. Mikutta, R. Kretzschmar, Arsenic sequestration by organic sulphur in peat. Nat. Geosci. 2012, 5, 66.
CrossRef | CAS |

[22]  M. Hoffmann, C. Mikutta, R. Kretzschmar, Bisulfide reaction with natural organic matter enhances arsenite sorption: insights from x-ray absorption spectroscopy. Environ. Sci. Technol. 2012, 46, 11788.
CrossRef | CAS | PubMed |

[23]  J. P. Werne, T. W. Lyons, D. J. Hollander, S. Schouten, E. C. Hopmans, J. S. Sinninghe Damsté, Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis. Geochim. Cosmochim. Acta 2008, 72, 3489.
CrossRef | CAS |

[24]  M. Yücel, S. K. Konovalov, T. S. Moore, C. P. Janzen, G. W. Luther, Sulfur speciation in the upper black sea sediments. Chem. Geol. 2010, 269, 364.
CrossRef |

[25]  N. R. Urban, K. Ernst, S. Bernasconi, Addition of sulfur to organic matter during early diagenesis of lake sediments. Geochim. Cosmochim. Acta 1999, 63, 837.
CrossRef | CAS |

[26]  R. M. Couture, B. Shafei, P. Van Cappellen, A. Tessier, C. Gobeil, Non-steady state modeling of arsenic diagenesis in lake sediments. Environ. Sci. Technol. 2010, 44, 197.
CrossRef | CAS | PubMed |

[27]  C. Pallud, C. Meile, A. M. Laverman, J. Abell, P. Van Cappellen, The use of flow-through sediment reactors in biogeochemical kinetics: methodology and examples of applications. Mar. Chem. 2007, 106, 256.
CrossRef | CAS |

[28]  D. Fortin, G. G. Leppard, A. Tessier, Caracteristics of lacustrine diagenetic iron oxyhydroxide. Geochim. Cosmochim. Acta 1993, 57, 4391.
CrossRef | CAS |

[29]  S. G. Benner, C. M. Hansel, B. W. Wielinga, T. M. Barber, S. Fendorf, Reductive dissolution and biomineralization of iron hydroxide under dynamic flow conditions. Environ. Sci. Technol. 2002, 36, 1705.
CrossRef | CAS | PubMed |

[30]  F. Wang, A. Tessier, J. Buffle, Voltammetric determination of elemental sulfur in pore waters. Limnol. Oceanogr. 1998, 43, 1353.
CrossRef | CAS |

[31]  B. Planer-Friedrich, D. Wallschläger, A critical investigation of hydride generation-based arsenic speciation in sulfidic waters. Environ. Sci. Technol. 2009, 43, 5007.
CrossRef | CAS | PubMed |

[32]  D. G. Beak, R. T. Wilkin, R. G. Ford, S. D. Kelly, Examination of arsenic speciation in sulfidic solutions using X-ray absorption spectroscopy. Environ. Sci. Technol. 2008, 42, 1643.
CrossRef | CAS | PubMed |

[33]  D. Wallschläger, J. London, Determination of methylated arsenic-sulfur compounds in groundwater. Environ. Sci. Technol. 2008, 42, 228.
CrossRef | PubMed |

[34]  B. Ravel, M. Newville, Athena, artemis, hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537.
CrossRef | CAS | PubMed |

[35]  D. Wallschläger, C. J. Stadey, Determination of (oxy)thioarsenates in sulfidic waters. Anal. Chem. 2007, 79, 3873.
CrossRef | PubMed |

[36]  G. R. Helz, J. A. Tossell, J. M. Charnock, R. A. D. Pattrick, D. J. Vaughan, D. Garner, Oligomerization in AsIII sulfide solutions: theoretical constraints and spectroscopic evidence. Geochim. Cosmochim. Acta 1995, 59, 4591.
CrossRef | CAS |

[37]  J. James-Smith, J. Cauzid, D. Testemale, W. H. Liu, J. L. Hazemann, O. Proux, B. Etschmann, P. Philippot, D. Banks, P. Williams, J. Brugger, Arsenic speciation in fluid inclusions using micro-beam X-ray absorption spectroscopy. Am. Mineral. 2010, 95, 921.
CrossRef | CAS |

[38]  R.-M. Couture, J. C. Rose, N. Kumar, K. Mitchell, D. Wallschläger, P. Van Cappellen, Sorption of arsenite, arsenate and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation. Environ. Sci. Technol. 2013, 47, 5652.
CrossRef | CAS | PubMed |

[39]  A. Manceau, K. L. Nagy, Quantitative analysis of sulfur functional groups in natural organic matter by xanes spectroscopy. Geochim. Cosmochim. Acta 2012, 99, 206.
CrossRef | CAS |

[40]  Y. P. Hsieh, Y. N. Shieh, Analysis of reduced inorganic sulfur by diffusion methods: Improved apparatus and evaluation for sulfur isotopic studies. Chem. Geol. 1997, 137, 255.
CrossRef | CAS |

[41]  E. D. Burton, L. A. Sullivan, R. T. Bush, S. G. Johnston, A. F. Keene, A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils. Appl. Geochem. 2008, 23, 2759.
CrossRef | CAS |

[42]  D. L. Parkhurst, C. A. J. Apello, User’s guide to PHREEQC (Version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259 1999 (US Geological Survey: Denver, CO). Available at http://pubs.er.usgs.gov/publication/wri994259 [Verified 28 June 2013].

[43]  D. Canfield, E. Kristensen, B. Thamdrup, Advances in Marine Biology: Aquatic Geomicrobiology, vol. 48 (Eds AJ Southward, PA Tyler, CM Young, LA Fuiman) 2005 (Elsevier Academic Press: San Diego, CA).

[44]  E. D. Burton, R. T. Bush, S. G. Johnston, L. A. Sullivan, A. F. Keene, Sulfur biogeochemical cycling and novel Fe–S mineralization pathways in a tidally re-flooded wetland. Geochim. Cosmochim. Acta 2011, 75, 3434.
CrossRef | CAS |

[45]  S. W. Poulton, M. D. Krom, R. Raiswell, A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 2004, 68, 3703.
CrossRef | CAS |

[46]  J. P. Werne, D. J. Hollander, T. W. Lyons, J. S. Sinninghe Damsté, Organic sulfur biogeochemistry: recent advances and future research directions. Spec. Pap. Geol. Soc. Am. 2004, 379, 135.

[47]  G. R. Helz, J. A. Tossell, Thermodynamic model for arsenic speciation in sulfidic waters: a novel use of ab initio computations. Geochim. Cosmochim. Acta 2008, 72, 4457.
CrossRef | CAS |

[48]  D. Solomon, J. Lehmann, M. Tekalign, F. Fritzsche, W. Zech, Sulfur fractions in particle-size separates of the sub-humid ethiopian highlands as influenced by land use changes. Geoderma 2001, 102, 41.
CrossRef | CAS |

[49]  J. r. Prietzel, A. Botzaki, N. Tyufekchieva, M. Brettholle, J. r. Thieme, W. Klysubun, Sulfur speciation in soil by s k-edge xanes spectroscopy: comparison of spectral deconvolution and linear combination fitting. Environ. Sci. Technol. 2011, 45, 2878.
CrossRef | CAS |

[50]  B. Morgan, E. D. Burton, A. W. Rate, Iron monosulfide enrichment and the presence of organosulfur in eutrophic estuarine sediments. Chem. Geol. 2012, 296–297, 119.
CrossRef |

[51]  M. L. Farquhar, J. M. Charnock, F. R. Livens, D. J. Vaughan, Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study. Environ. Sci. Technol. 2002, 36, 1757.
CrossRef | CAS | PubMed |

[52]  B. Planer-Friedrich, E. Suess, A. C. Scheinost, D. Wallschlger, Arsenic speciation in sulfidic waters: reconciling contradictory spectroscopic and chromatographic evidence. Anal. Chem. 2010, 82, 10 228.
CrossRef | CAS |

[53]  R.-M. Couture, P. Van Cappellen, Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments. J. Hazard. Mater. 2011, 189, 647.
CrossRef | CAS | PubMed |

[54]  E. Suess, B. Planer-Friedrich, Thioarsenate formation upon dissolution of orpiment and arsenopyrite. Chemosphere 2012, 89, 1390.
CrossRef | CAS | PubMed |

[55]  E. Suess, D. Wallschläger, B. Planer-Friedrich, Stabilization of thioarsenates in iron-rich waters. Chemosphere 2011, 83, 1524.
CrossRef | CAS | PubMed |

[56]  B. Planer-Friedrich, D. Franke, B. Merkel, D. Wallschläger, Acute toxicity of thioarsenates to Vibrio fischeri. Environ. Toxicol. Chem. 2008, 27, 2027.
CrossRef | CAS | PubMed |

[57]  R.-M. Couture, A. Sekowska, G. Fang, A. Danchin, Linking selenium biogeochemistry to the sulfur-dependent biological detoxification of arsenic. Environ. Microbiol. 2012, 14, 1612.
CrossRef | CAS | PubMed |


   
 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015