Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Role of sea salt aerosols in the formation of aromatic secondary organic aerosol: yields and hygroscopic properties

Ross Beardsley A , Myoseon Jang A C , Baber Ori A , Yunseok Im A , Carrie A. Delcomyn B and Ned Witherspoon B
+ Author Affiliations
- Author Affiliations

A Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611, USA.

B Science, Technology, Analysis and Simulation Department, Naval Surface Warfare Center, Panama City, FL 32407, USA.

C Corresponding author. Email: mjang@ufl.edu

Environmental Chemistry 10(3) 167-177 https://doi.org/10.1071/EN13016
Submitted: 24 January 2013  Accepted: 27 April 2013   Published: 28 June 2013

Environmental context. In the coastal and ocean environment, oil spills and ship movement can produce hazardous, organic aerosols. In this study, the role of sea salt in the formation processes of crude-oil-derived organic aerosols derived was explored, and it was found that sea salt can greatly increase the formation and growth of these toxic aerosols. Understanding of this process is crucial for evaluating the effect of oil spills and ship movements on air quality and human health.

Abstract. Dual, large (52 m3), outdoor chambers were used to investigate the effect of aerosol aqueous phase chemistry on the secondary organic aerosol (SOA) yields of the photooxidation products of aromatic hydrocarbons in the coastal environment. Toluene and 1,3,5-trimethylbenzene were photochemically oxidised in the presence and absence of inorganic seeds (sea salt aerosol (SSA) or NaCl) at low NOx conditions. Overall, the presence of SSA, which was shown to contain water even at low relative humidities (RHs), led to higher SOA yields than the presence of NaCl seeds and the seedless condition. The results suggest that SOA yields in the coastal environment will be higher than those produced in terrestrial environment. To study the effect of SOA formation on the chemical composition of SSA, inorganic species were measured using a particle-into-liquid-sampler coupled to an ion chromatograph. The hygroscopic properties of the SSA internally mixed with SOA were analysed using a Fourier-transform infrared spectrometer. The fresh SSA shows a weak phase transition whereas no clear phase transition appeared in the aged SSA. The depletion of Cl due to the accommodation of nitric acid and carboxylic acids on the surface of SSA coincides with changes in aerosol hygroscopic properties.

Additional keywords: aerosol water content, toluene, 1,3,5-trimethylbenzene.


References

[1]  R. Volkamer, J. Jimenez, F. San Martini, K. Dzepina, Q. Zhang, D. Salcedo, L. Molina, D. Worsnop, M. Molina, Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected. Geophys. Res. Lett. 2006, 33, L17811.
Secondary organic aerosol formation from anthropogenic air pollution: rapid and higher than expected.Crossref | GoogleScholarGoogle Scholar |

[2]  J. de Gouw, A. Middlebrook, C. Warneke, P. Goldan, W. Kuster, J. Roberts, F. Fehsenfeld, D. Worsnop, M. Canagaratna, A. Pszenny, W. Keene, M. Marchewka, S. Bertman, T. Bates, Budget of organic carbon in a polluted atmosphere: results from the New England Air Quality Study in 2002. J. Geophys. Res. – Atmos. 2005, 110, D16305.
Budget of organic carbon in a polluted atmosphere: results from the New England Air Quality Study in 2002.Crossref | GoogleScholarGoogle Scholar |

[3]  M. Jang, N. Czoschke, S. Lee, R. Kamens, Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 2002, 298, 814.
Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotFSntLk%3D&md5=f347a4de506d13b874097c68a4f53a39CAS | 12399587PubMed |

[4]  J. Blando, B. Turpin, Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmos. Environ. 2000, 34, 1623.
Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitFOjt7c%3D&md5=0d4ea5e801d14c0a230234974956c55dCAS |

[5]  B. Ervens, G. Feingold, G. Frost, S. Kreidenweis, A modeling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production. J. Geophys. Res. – Atmos. 2004, 109, D15205.
A modeling study of aqueous production of dicarboxylic acids: 1. Chemical pathways and speciated organic mass production.Crossref | GoogleScholarGoogle Scholar |

[6]  H. Lim, A. Carlton, B. Turpin, Isoprene forms secondary organic aerosol through cloud processing: model simulations. Environ. Sci. Technol. 2005, 39, 4441.
Isoprene forms secondary organic aerosol through cloud processing: model simulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVWrsrg%3D&md5=555691f199f9159e51b9ddbac358d181CAS | 16047779PubMed |

[7]  K. Altieri, A. Carlton, H. Lim, B. Turpin, S. Seitzinger, Evidence for oligomer formation in clouds: reactions of isoprene oxidation products. Environ. Sci. Technol. 2006, 40, 4956.
Evidence for oligomer formation in clouds: reactions of isoprene oxidation products.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmslaqsrg%3D&md5=223633d12584346acb444ec9baab548fCAS | 16955892PubMed |

[8]  R. Volkamer, F. Martini, L. Molina, D. Salcedo, J. Jimenez, M. Molina, A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol. Geophys. Res. Lett. 2007, 34, L19807.
A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol.Crossref | GoogleScholarGoogle Scholar |

[9]  B. Ervens, R. Volkamer, Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles. Atmos. Chem. Phys. 2010, 10, 8219.
Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktlams7k%3D&md5=1afbc328cc960690297abd736a8f9463CAS |

[10]  R. Volkamer, P. Ziemann, M. Molina, Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase. Atmos. Chem. Phys. 2009, 9, 1907.
Secondary organic aerosol formation from acetylene (C2H2): seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlt1yisr4%3D&md5=259699adfbd26129d7ae39b83b9a4f4dCAS |

[11]  C. Bloss, V. Wagner, M. Jenkin, R. Volkamer, W. Bloss, J. Lee, D. Heard, K. Wirtz, M. Martin-Reviejo, G. Rea, J. Wenger, M. Pilling, Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmos. Chem. Phys. 2005, 5, 641.
Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyrtrs%3D&md5=cfca9a376e970cd5a081af5c9e6eb92aCAS |

[12]  D. Johnson, M. Jenkin, K. Wirtz, M. Martin-Reviejo, Simulating the formation of secondary organic aerosol from the photooxidation of aromatic hydrocarbons. Environ. Chem. 2005, 2, 35.
Simulating the formation of secondary organic aerosol from the photooxidation of aromatic hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisV2it7k%3D&md5=42bcdafc9f08812a691c3f65ac65c302CAS |

[13]  P. Sebastião, C. Soares, Modeling the fate of oil spills at sea. Spill Sci. Technol. Bull. 1995, 2, 121.
Modeling the fate of oil spills at sea.Crossref | GoogleScholarGoogle Scholar |

[14]  J. de Gouw, A. Middlebrook, C. Warneke, R. Ahmadov, E. Atlas, R. Bahreini, D. Blake, C. Brock, J. Brioude, D. Fahey, F. Fehsenfeld, J. Holloway, M. Le Henaff, R. Lueb, S. McKeen, J. Meagher, D. Murphy, C. Paris, D. Parrish, A. Perring, I. Pollack, A. Ravishankara, A. Robinson, T. Ryerson, J. Schwarz, J. Spackman, A. Srinivasan, L. Watts, Organic aerosol formation downwind from the deepwater horizon oil spill. Science 2011, 331, 1295.
Organic aerosol formation downwind from the deepwater horizon oil spill.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivVWks7Y%3D&md5=a9fe3cc2647a24e0ef0f7f485aa9bd48CAS | 21393539PubMed |

[15]  J. Jang, M. Jang, W. Mui, C. Delcomyn, M. Henley, J. Hearn, Formation of active chlorine oxidants in saline–oxone aerosol. Aerosol Sci. Technol. 2010, 44, 1018.
Formation of active chlorine oxidants in saline–oxone aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFKht77N&md5=10a449a816a7668c779393652fa74c81CAS |

[16]  Z. Wang, B. P. Hollebone, M. Fingas, B. Fieldhouse, L. Sigouin, M. Landriault, P. Smith, J. Noonan, G. Thouin, Characteristics of spilled oils, fuels, and petroleum products: 1. Composition and properties of selected oils, US EPA report 2003 (US Environmental Protection Agency: Research Triangle Park, NC).

[17]  P. McMurry, D. Grosjean, Gas and aerosol wall losses in teflon film smog chambers. Environ. Sci. Technol. 1985, 19, 1176.
Gas and aerosol wall losses in teflon film smog chambers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtVSiur8%3D&md5=be9edb2f0700a220977835f36411c92aCAS | 22280133PubMed |

[18]  A. Wexler, S. Clegg, Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42–, NO3–,Cl–, Br–, and H2O. J. Geophys. Res. – Atmos. 2002, 107, 4207.
Atmospheric aerosol models for systems including the ions H+, NH4+, Na+, SO42–, NO3,Cl, Br, and H2O.Crossref | GoogleScholarGoogle Scholar |

[19]  S. Clegg, K. Pitzer, P. Brimblecombe, Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes. J. Phys. Chem. 1992, 96, 9470.
Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xmt1Wju7c%3D&md5=1dcaeb3666d20e3c44184de21cf54d4dCAS |

[20]  S. Clegg, P. Brimblecombe, A. Wexler, Thermodynamic model of the system H+–NH4+–Na+–SO42––NO3––Cl––H2O at 298.15 K. J. Phys. Chem. A 1998, 102, 2155.
Thermodynamic model of the system H+–NH4+–Na+–SO42––NO3–Cl–H2O at 298.15 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhtlekt7c%3D&md5=333a2382b2a342998df311cb4b47e7edCAS |

[21]  J. Odum, T. Hoffmann, F. Bowman, D. Collins, R. Flagan, J. Seinfeld, Gas/particle partitioning and secondary organic aerosol yields. Environ. Sci. Technol. 1996, 30, 2580.
Gas/particle partitioning and secondary organic aerosol yields.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslOiurc%3D&md5=13f353ecb6ce96f5a2ec49a13a669298CAS |

[22]  B. Turpin, H. Lim, Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 2001, 35, 602.
| 1:CAS:528:DC%2BD3MXkvVarsb8%3D&md5=734178c87fb0ae8d587bbf9009e2f6d0CAS |

[23]  J. Odum, T. Jungkamp, R. Griffin, R. Flagan, J. Seinfeld, Aromatics, reformulated gasoline, and atmospheric aerosol formation. Abstr. Pap. Am. Chem. S. 1997, 214, 107..

[24]  G. Cao, M. Jang, Effects of particle acidity and UV light on secondary organic aerosol formation from oxidation of aromatics in the absence of NOx. Atmos. Environ. 2007, 41, 7603.
Effects of particle acidity and UV light on secondary organic aerosol formation from oxidation of aromatics in the absence of NOx.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yis7vK&md5=3f7a0ff6170b04ee7d2e283c09263a05CAS |

[25]  H. Takekawa, H. Minoura, S. Yamazaki, Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons. Atmos. Environ. 2003, 37, 3413.
Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFems7o%3D&md5=c27f99ae278efd105eeed894695a3415CAS |

[26]  M. Jang, N. Czoschke, A. Northcross, Semiempirical model for organic aerosol growth by acid-catalyzed heterogeneous reactions of organic carbonyls. Environ. Sci. Technol. 2005, 39, 164.
Semiempirical model for organic aerosol growth by acid-catalyzed heterogeneous reactions of organic carbonyls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCmsLvL&md5=99f4af4d06c4eeb3f17dbde518c9b79eCAS | 15667091PubMed |

[27]  G. Biskos, A. Malinowski, L. Russell, P. Buseck, S. Martin, Nanosize effect on the deliquescence and the efflorescence of sodium chloride particles. Aerosol Sci. Technol. 2006, 40, 97.
Nanosize effect on the deliquescence and the efflorescence of sodium chloride particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKjsr8%3D&md5=bafe26016f8b141f344251cff4e59924CAS |

[28]  I. Tang, H. Munkelwitz, Composition and temperature-dependence of the deliquesence properties of hygroscopic aerosols. Atmos. Environ., A Gen. Topics 1993, 27, 467.
Composition and temperature-dependence of the deliquesence properties of hygroscopic aerosols.Crossref | GoogleScholarGoogle Scholar |

[29]  M. Wise, G. Biskos, S. Martin, L. Russell, P. Buseck, Phase transitions of single salt particles studied using a transmission electron microscope with an environmental cell. Aerosol Sci. Technol. 2005, 39, 849.
Phase transitions of single salt particles studied using a transmission electron microscope with an environmental cell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2ktLfE&md5=22ebb36733d91d0611a0e152b9714178CAS |

[30]  C. Lee, W. Hsu, The measurement of liquid water mass associated with collected hygroscopic particles. J. Aerosol Sci. 2000, 31, 189.
The measurement of liquid water mass associated with collected hygroscopic particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFSjtg%3D%3D&md5=af26f4c7984086f80a3dffef0bcb3b65CAS |

[31]  L. Zhao, Y. Zhang, Z. Wei, H. Cheng, X. Li, Magnesium sulfate aerosols studied by FTIR spectroscopy: hygroscopic properties, supersaturated structures, and implications for seawater aerosols. J. Phys. Chem. A 2006, 110, 951.
Magnesium sulfate aerosols studied by FTIR spectroscopy: hygroscopic properties, supersaturated structures, and implications for seawater aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFKj&md5=3c9361b234a70baf6d6546157d1ca2f6CAS | 16419995PubMed |

[32]  N. Ng, J. Kroll, A. Chan, P. Chhabra, R. Flagan, J. Seinfeld, Secondary organic aerosol formation from m-xylene, toluene, and benzene. Atmos. Chem. Phys. 2007, 7, 3909.
Secondary organic aerosol formation from m-xylene, toluene, and benzene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2gtb7E&md5=905e2695355c481874dfc444c2fa4ee7CAS |

[33]  H. ten Brink, Reactive uptake of HNO3 and H2SO4 in sea-salt (NaCl) particles. J. Aerosol Sci. 1998, 29, 57.
Reactive uptake of HNO3 and H2SO4 in sea-salt (NaCl) particles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFCgsw%3D%3D&md5=a29fcfdc34ebca23c88aedaac39b40e7CAS |

[34]  D. Weis, G. Ewing, The reaction of nitrogen dioxide with sea salt aerosol. J. Phys. Chem. A 1999, 103, 4865.
The reaction of nitrogen dioxide with sea salt aerosol.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsFCqtb8%3D&md5=8e57755b1f8899b26d461ecbffd103acCAS |

[35]  R. Hoffman, A. Laskin, B. Finlayson-Pitts, Sodium nitrate particles: physical and chemical properties during hydration and dehydration, and implications for aged sea salt aerosols. J. Aerosol Sci. 2004, 35, 869.
Sodium nitrate particles: physical and chemical properties during hydration and dehydration, and implications for aged sea salt aerosols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsVShtb0%3D&md5=9803f57b42d4f59acf08d59def7e955cCAS |

[36]  P. Beichert, B. Finlayson-Pitts, Knudsen cell studies of the uptake of gaseous HNO3 and other oxides of nitrogen on solid NaCl: the role of surface-adsorbed water. J. Phys. Chem. 1996, 100, 15218.
Knudsen cell studies of the uptake of gaseous HNO3 and other oxides of nitrogen on solid NaCl: the role of surface-adsorbed water.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XltV2ksL8%3D&md5=42bfc75071c5f46b3517111602d06b74CAS |

[37]  M. Shiraiwa, J. H. Seinfeld, Equilibration timescale of atmospheric secondary organic aerosol partitioning. Geophys. Res. Lett. 2012, 39, L24801.
Equilibration timescale of atmospheric secondary organic aerosol partitioning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXotVOgsg%3D%3D&md5=6ca82ab7aa9a089b9dd5bdb127016112CAS |

[38]  A. Laskin, R. Moffet, M. Gilles, J. Fast, R. Zaveri, B. Wang, P. Nigge, J. Shutthanandan, Tropospheric chemistry of internally mixed sea salt and organic particles: surprising reactivity of NaCl with weak organic acids. J. Geophys. Res. – Atmos. 2012, 117, D15302.
Tropospheric chemistry of internally mixed sea salt and organic particles: surprising reactivity of NaCl with weak organic acids.Crossref | GoogleScholarGoogle Scholar |

[39]  C. Peng, C. Chan, The water cycles of water-soluble organic salts of atmospheric importance. Atmos. Environ. 2001, 35, 1183.
The water cycles of water-soluble organic salts of atmospheric importance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntVOktw%3D%3D&md5=109e84d10fcb0a03ba7a96f12f271310CAS |

[40]  M. Jang, R. Kamens, Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene. Environ. Sci. Technol. 2001, 35, 3626.
Characterization of secondary aerosol from the photooxidation of toluene in the presence of NOx and 1-propene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvFynurw%3D&md5=b4dc3f829d8470f78be9fb3bcb131989CAS | 11783638PubMed |

[41]  J. Pankow, An absorption model of gas-particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 1994, 28, 185.
An absorption model of gas-particle partitioning of organic compounds in the atmosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXisFajs78%3D&md5=c57a2c978502e6cc9c92a9ebca46e43aCAS |

[42]  M. Jenkin, S. Saunders, V. Wagner, M. Pilling, Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 181.
Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Sntrw%3D&md5=0145ea2e3046ed18a736df85992d5c73CAS |

[43]  J. Cohen, C. Small, A. Mellinger, J. Gallup, J. Sachs, Estimates of coastal populations. Science 1997, 278, 1209.
Estimates of coastal populations.Crossref | GoogleScholarGoogle Scholar |

[44]  S. Saito, I. Nagao, H. Tanaka, Relationship of NOx and NMHC to photochemical O3 production in a coastal and metropolitan areas of Japan. Atmos. Environ. 2002, 36, 1277.
Relationship of NOx and NMHC to photochemical O3 production in a coastal and metropolitan areas of Japan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhs1Ont74%3D&md5=ea6817e97d94862fa2d479882381d3aaCAS |

[45]  Y. Itano, H. Bandow, N. Takenaka, A. Asayama, H. Tanaka, S. Wakamatsu, K. Murano, Daily variation and effect on inland air quality of the strong NOx emissions from ships in the Osaka Bay, Japan. Terr. Atmos. Ocean Sci. 2005, 16, 1177.

[46]  E. R. Lewis, S. E. Schwartz, Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models 2004 (American Geophysical Union: Washington, DC).