CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

 

Article << Previous     |     Next >>   Contents Vol 11(2)

The development of electrochemical methods for determining nanoparticles in the environment. Part II. Chronoamperometric study of FeS in sodium chloride solutions

Elvira Bura-Nakić A C, Marija Marguš A, Ivana Milanović A, Darija Jurašin B and Irena Ciglenečki A

A Center for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
B Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
C Corresponding author. Email: ebnakic@irb.hr

Environmental Chemistry 11(2) 187-195 http://dx.doi.org/10.1071/EN13090
Submitted: 10 May 2013  Accepted: 16 September 2013   Published: 11 December 2013


 
PDF (604 KB) $25
 Export Citation
 Print
  

Environmental context. In anoxic environments FeS is both an important mediator in the Fe and S biogeochemical cycles and plays a vital role in controlling the scavenging and availability of many trace metals. Electrochemical detection of colloidal and particulate FeS in natural waters can be done by voltammetric measurements. The recorded anodic waves, however, are rather qualitative and lack information on the FeS concentration and size distribution.

Abstract. The interactions of FeS nanoparticles (NPs) with a hanging mercury drop electrode in NaCl solutions were monitored by chronoamperometric measurements. Collisions of FeS NPs with the mercury surface were studied over a wide range of electrode potentials (between 0 and –1.9 V v. Ag/AgCl). Faradaic impact transients were recorded only at the negative potentials (between –1.5 and –1.9 V). It was shown that the mercury electrode surface modified with a FeS adlayer catalyses sodium reduction by shifting the potentials of this process to more positive values. This catalytic process together with possible hydrogen evolution is assumed to be the physicochemical basis for the determination of FeS NPs. Chronoamperometric measurements at the electrode potential of –1.9 V showed that the reduction processes of sodium and hydrogen on FeS NPs upon collision are the main cause of sharp reduction current transients. At sufficiently positive electrode potentials (~–1.5 V) the colliding FeS NPs would not be immediately repelled; instead they remained adhered to the mercury surface, causing ‘staircase-like’ chronoamperometric signals. It appears that recorded reduction current transients are carrying FeS NPs’ size information, which is consistent with parallel dynamic light scattering (DLS) measurements.

Additional keywords: chronoamperometry, collision, Hg electrode.


References

[1]  J. R. Lead, K. J. Wilkinson, Environmental Colloids and Particles. IUPAC Series, Analytical and Physical Chemistry, Vol. 10 2007 (Wiley: Chichester, UK).

[2]  D. Krznarić, G. R. Helz, E. Bura-Nakić, D. Jurašin, Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes: copper sulfide example. Anal. Chem. 2008, 80, 742.
CrossRef | PubMed |

[3]  E. Bura-Nakić, D. Krznarić, G. R. Helz, I. Ciglenečki, Characterization of iron sulfide species in model solutions by cyclic voltammetry. revisiting an old problem. Electroanalysis 2011, 23, 1376.
CrossRef |

[4]  G. R. Helz, I. Ciglenečki, D. Krznarić, E. Bura-Nakić, Voltammetry of sulfide nanoparticles and the FeS(aq) problem, in Aquatic Redox Chemistry (Eds P. G. Tratnyek, T. J. Grundl, S. B. Haderlein) 2011, pp. 265–282 (American Chemical Society: Washington DC).

[5]  E. Bura-Nakić, D. Krznarić, D. Jurasin, G. R. Helz, I. Ciglenečki, Voltammetric characterization of metal sulfide particles and nanoparticles in model solutions and natural waters. Anal. Chim. Acta 2007, 594, 44.
CrossRef | PubMed |

[6]  I. Ciglenečki, D. Krznarić, G. R. Helz, Voltammetry of copper sulfide particles and nanoparticles; Investigation of the cluster hypothesis. Environ. Sci. Technol. 2005, 39, 7492.
CrossRef | PubMed |

[7]  E. Bura-Nakić, E. Viollier, I. Ciglenečki, Electrochemical and colorimetric measurements show the dominant role of FeS in a permanently anoxic lake. Envi. Sci. Tech. 2013, 47, 741.
CrossRef |

[8]  M. Heyrovský, J. Jirkovský, Polarography and voltammetry of ultrasmall colloids: introduction to a new field. Langmuir 1995, 11, 4288.
CrossRef |

[9]  M. Heyrovský, J. Jirkovský, B. R. Muller, Polarography and voltammetry of aqueous colloidal SnO2 solutions. Langmuir 1995, 11, 4293.
CrossRef |

[10]  M. Heyrovský, J. Jirkovský, M. Štruplová-Bartáčková, Polarography and voltammetry of aqueous colloidal TiO2 solutions. Langmuir 1995, 11, 4300.
CrossRef |

[11]  M. Heyrovský, J. Jirkovský, M. Štruplová-Bartáčková, Polarography and voltammetry of mixed titanium(IV) oxide/iron(III) oxide colloids. Langmuir 1995, 11, 4309.
CrossRef |

[12]  V. Svetličić, A. Hozić, Probing cell surface charge by scanning electrode potential. Electrophoresis 2002, 23, 2080.
CrossRef | PubMed |

[13]  V. Svetličić, N. Ivošević, S. Kovač, V. Žutić, Charge displacement by adhesion and spreading of a cell: amperometric signals of living cells. Langmuir 2000, 16, 8217.
CrossRef |

[14]  V. Svetličić, N. Ivošević, S. Kovač, V. Žutić, Charge displacement by adhesion and spreading of a cell. Bioelectrochemistry 2001, 53, 79.
CrossRef | PubMed |

[15]  S. Kovač, V. Svetličić, V. Žutić, Molecular adsorption vs. cell adhesion at an electrified aqueos interface. Colloids Surf. A Physicochem. Eng. Asp. 1999, 149, 481.
CrossRef |

[16]  D. Hellberg, F. Sholz, F. Shubert, M. Lovrić, D. Omanović, V. A. Hernandez, R. Thede, Kinetics of liposome adhesion on a mercury electrode. J. Phys. Chem. 2005, 109, 14715.
CrossRef | CAS |

[17]  R. Tsekov, S. Kovač, V. Žutić, Attachment of oil droplets and cells on dropping mercury electrode. Langmuir 1999, 15, 5649.
CrossRef | CAS |

[18]  F. Scholz, D. Hellberg, F. Harnisch, A. Hummel, U. Hasse, Detection of the adhesion events of dispersed single montmorillonite particles at a static mercury drop electrode. Electrochem. Commun. 2004, 6, 929.
CrossRef | CAS |

[19]  X. Xiao, S. Pan, J. S. Jang, F. R. F. Fan, A. J. Bard, Single nanoparticle electrocatalysis: effect of monolayers on particle and electrode on electron transfer. J. Phys. Chem. C 2009, 113, 14978.
CrossRef | CAS |

[20]  X. Xiao, F. R. F. Fan, J. Zhou, A. J. Bard, Current transients in single nanoparticle collision events. J. Am. Chem. Soc. 2008, 130, 16669.
CrossRef | CAS | PubMed |

[21]  X. Xiao, A. J. Bard, Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 2007, 129, 9610.
CrossRef | CAS | PubMed |

[22]  H. Zhou, F. R. F. Fan, A. J. Bard, Observation of discrete au nanoparticle collisions by electrocatalytic amplification using Pt ultramicroelectrode surface modification. J. Phys. Chem. Lett. 2010, 1, 2671.
CrossRef | CAS |

[23]  A. D. Clegg, N. V. Rees, C. E. Banks, R. G. Compton, Ultrafast chronoamperometry of single impact events in acoustically agitated solid particulate suspensions. ChemPhysChem 2006, 7, 807.
CrossRef | CAS | PubMed |

[24]  J. Cutress, N. V. Rees, Y. Zhou, R. G. Compton, Nanoparticle–electrode collision processes: investigating the contact time required for the diffusion-controlled monolayer underpotential deposition on impacting nanoparticles. J. Phys. Chem. Lett. 2011, 514, 58.
CrossRef | CAS |

[25]  Y. Zhou, N. V. Rees, R. G. Compton, Nanoparticle–electrode collision processes: the electroplating of bulk cadmium on impacting silver nanoparticles. J. Phys. Chem. Lett. 2011, 511, 183.
CrossRef | CAS |

[26]  Y. Zhou, N. V. Rees, R. G. Compton, The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew. Chem. Int. Ed. 2011, 50, 4219.
CrossRef | CAS |

[27]  Y. Zhou, N. V. Rees, J. Pillay, R. Tshikhudo, S. Vilakazi, R. G. Compton, Gold nanoparticles show electroactivity: counting and sorting nanoparticles upon impact with electrodes. Chem. Commun. 2011, 48, 224.
CrossRef |

[28]  Y. G. Zhou, N. V. Rees, R. G. Compton, Nanoparticle–electrode collision processes: the underpotential deposition of thalium on silver nanoparticles in aqueous solutions. ChemPhysChem 2011, 12, 2085.
CrossRef | CAS | PubMed |

[29]  S. J. Kwon, F. R. F. Fan, A. J. Bard, Observing iridium oxide (IrOx) single nanoparticle collision at ultramicroelectrodes. J. Am. Chem. Soc. 2010, 132, 13165.
CrossRef | CAS | PubMed |

[30]  P. Salaün, B. Planer-Friedrich, C. M. G. van den Berg, Inorganic arsenic speciation in water and seawater by anodic stripping voltammetry with a gold microelectrode. Anal. Chim. Acta 2007, 585, 312.
CrossRef | PubMed |

[31]  P. Salaün, C. M. G. van den Berg, Voltammetric detection of mercury and copper in seawater using a gold microwire electrode. Anal. Chem. 2006, 78, 5052.
CrossRef | PubMed |

[32]  P. J. Brendel, G. W. Luther, Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and SII in porewaters of marine and freshwater sediments. Envi. Sci. Tech. 1995, 29, 751.
CrossRef | CAS |

[33]  J. A. Dean (Ed.), Lange’s Handbook of Chemistry, 12th edn 1979 (McGraw-Hill, Inc.: New York).

[34]  E. Itabashi, Influence of sulfide and cyanide ions on the electrochemical behavior of the FeII/Fe(Hg) system in thiocyanate solutions at mercury electrodes. J. Electroanal. Chem. 1981, 117, 295.
CrossRef | CAS |

[35]  K. Winkler, T. Krogulec, Z. Galus, Formation of FeS and its effect on the electrode reactions of the FeII/Fe system in thiocyanate solutions at mercury electrodes. Electrochim. Acta 1985, 30, 1055.
CrossRef | CAS |

[36]  K. Winkler, S. Kalinowski, T. Krogulec, A study of the deposition of iron on mercury and glassy carbon electrodes. J. Electroanal. Chem. 1988, 252, 303.
CrossRef | CAS |

[37]  K. Winkler, T. Krogulec, The study of electrode processes of Fe(II)-thiosulphate complexes on mercury electrodes. J. Electroanal. Chem. 1995, 386, 127.
CrossRef |

[38]  I. Milanović, D. Krznarić, E. Bura-Nakić, I. Ciglenečki, Deposition and dissolution of metal sulfide layers at the Hg electrode surface in seawater electrolyte conditions. Environ. Chem. 2013,

[39]  W. Davison, N. Phillips, B. J. Tabner, Soluble iron sulfide species in natural waters: Reappraisal of their stoichiometry and stability constants. Aquat. Sci. 1999, 61, 23.
CrossRef | CAS |

[40]  M. Wolthers, L. Charlet, P. R. van der Linde, D. Rickard, C. H. van der Weijden, Arsenic mobility in the ambient sulphidic environment: sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochim. Cosmochim. Acta 2005, 69, 3469.
CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015