Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
FOREWORD

Foreword to the special issue on ‘Biological and environmental chemistry of DMS(P) and related compounds’

Rafel Simó
+ Author Affiliations
- Author Affiliations

Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37–49, E-08003, Barcelona, Catalonia, Spain. Email: rsimo@icm.csic.es

Environmental Chemistry 13(2) i-iii https://doi.org/10.1071/ENv13n2_FO
Published: 21 March 2016


References

[1]  F. Challenger, M. I. Simpson, Studies on biological methylation. Part XII. A precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata. Dimethyl-2-carboxyethylsulphonium hydroxide and its salts J. Chem. Soc. 1948, 1948, 1591.
Studies on biological methylation. Part XII. A precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata. Dimethyl-2-carboxyethylsulphonium hydroxide and its saltsCrossref | GoogleScholarGoogle Scholar |

[2]  F. Challenger, Biological methylation Adv. Enzymol. Relat. Subj. Biochem. 1951, 12, 429.

[3]  J. E. Lovelock, R. J. Maggs, R. A. Rasmussen, Atmospheric dimethyl sulphide and the natural sulphur cycle Nature 1972, 237, 452.
Atmospheric dimethyl sulphide and the natural sulphur cycleCrossref | GoogleScholarGoogle Scholar |

[4]  G. E. Shaw, Biol.-controlled thermostasis involving the sulfur cycle Clim. Change 1983, 5, 297.
Biol.-controlled thermostasis involving the sulfur cycleCrossref | GoogleScholarGoogle Scholar |

[5]  R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate Nature 1987, 326, 655.
Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climateCrossref | GoogleScholarGoogle Scholar |

[6]  P. K. Quinn, T. S. Bates, The case against climate regulation via oceanic phytoplankton sulphur emission Nature 2011, 480, 51.
The case against climate regulation via oceanic phytoplankton sulphur emissionCrossref | GoogleScholarGoogle Scholar |

[7]  B. R. Lyon, J. M. Bennett-Mintz, P. A. Lee, M. G. Janech, G. R. DiTullio, Role of dimethylsulfoniopropionate as an osmoprotectant following gradual salinity shifts in the sea-ice diatom Fragilariopsis cyclindrus Environ. Chem. 2016, 13, 181.
Role of dimethylsulfoniopropionate as an osmoprotectant following gradual salinity shifts in the sea-ice diatom Fragilariopsis cyclindrusCrossref | GoogleScholarGoogle Scholar |

[8]  J. D. Kinsey, D. J. Kieber, P. J. Neale, Effects of iron limitation and UV radiation on Phaeocystis antarctica growth and dimethylsulfoniopropionate, dimethylsulfoxide and acrylate concentrations Environ. Chem. 2016, 13, 195.
Effects of iron limitation and UV radiation on Phaeocystis antarctica growth and dimethylsulfoniopropionate, dimethylsulfoxide and acrylate concentrationsCrossref | GoogleScholarGoogle Scholar |

[9]  M. Lavoie, M. Levasseur, W. G. Sunda, A steady-state physiological model for intracellular dimethylsulfoxide in marine phytoplankton Environ. Chem. 2016, 13, 212.
A steady-state physiological model for intracellular dimethylsulfoxide in marine phytoplanktonCrossref | GoogleScholarGoogle Scholar |

[10]  K. L. Van Alstyne, S. A. Gifford, J. M. Dohman, M. M. Savedo, Effects of environmental changes, tissue types and reproduction on the emission of dimethyl sulfide from seaweeds that form green tides Environ. Chem. 2016, 13, 220.
Effects of environmental changes, tissue types and reproduction on the emission of dimethyl sulfide from seaweeds that form green tidesCrossref | GoogleScholarGoogle Scholar |

[11]  R. W. Hill, J. W. H. Dacey, Exceptional accumulation and retention of dimethylsulfoniopropionate by molluscs Environ. Chem. 2016, 13, 231.
Exceptional accumulation and retention of dimethylsulfoniopropionate by molluscsCrossref | GoogleScholarGoogle Scholar |

[12]  E. Deschaseaux, G. Jones, H. Swan, Dimethylated sulfur compounds in coral-reef ecosystems Environ. Chem. 2016, 13, 239.
Dimethylated sulfur compounds in coral-reef ecosystemsCrossref | GoogleScholarGoogle Scholar |

[13]  P. R. Frade, V. Schwaninger, B. Glasl, E. Sintes, R. W. Hill, R. Simó, G. J. Herndl, Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus Environ. Chem. 2016, 13, 252.
Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucusCrossref | GoogleScholarGoogle Scholar |

[14]  C. Li, G. P. Yang, D. J. Kieber, J. Motard-Côté, R. P. Kiene, Assessment of DMSP turnover reveals a non-bioavailable pool of dissolved DMSP in coastal waters of the Gulf of Mexico Environ. Chem. 2016, 13, 266.
Assessment of DMSP turnover reveals a non-bioavailable pool of dissolved DMSP in coastal waters of the Gulf of MexicoCrossref | GoogleScholarGoogle Scholar |

[15]  J. Motard-Côté, D. J. Kieber, A. Rellinger, R. P. Kiene, Influence of the Mississipi River plume and non-bioavailable DMSP on disolved DMSP turnover in the northern Gulf of Mexico Environ. Chem. 2016, 13, 280.
Influence of the Mississipi River plume and non-bioavailable DMSP on disolved DMSP turnover in the northern Gulf of MexicoCrossref | GoogleScholarGoogle Scholar |

[16]  P. A. Lee, E. M. Bertrand, M. A. Saito, G. R. DiTullio, Influence of vitamin B12 availability on oceanic dimethylsulfide and dimethylsulfoniopropionate Environ. Chem. 2016, 13, 293.
Influence of vitamin B12 availability on oceanic dimethylsulfide and dimethylsulfoniopropionateCrossref | GoogleScholarGoogle Scholar |

[17]  N. M. Levine, D. A. Toole, A. Neeley, N. R. Bates, S. C. Doney, J. W. H. Dacey, Revising upper-ocean sulfur dynamics near Bermuda: new lessons from 3 years of concentration and rate measurements Environ. Chem. 2016, 13, 302.
Revising upper-ocean sulfur dynamics near Bermuda: new lessons from 3 years of concentration and rate measurementsCrossref | GoogleScholarGoogle Scholar |

[18]  A. L. Webb, G. Malin, F. E. Hopkins, K. L. Ho, U. Riebesell, K. G. Schulz, A. Larsen, P. S. Liss, Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions Environ. Chem. 2016, 13, 314.
Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactionsCrossref | GoogleScholarGoogle Scholar |

[19]  C. Zindler-Schlundt, H. Lutterbeck, S. Endres, H. W. Bange, Environmental control of dimethylsulfoxide (DMSO) cycling under ocean acidification Environ. Chem. 2016, 13, 330.
Environmental control of dimethylsulfoxide (DMSO) cycling under ocean acidificationCrossref | GoogleScholarGoogle Scholar |

[20]  M. Sela-Adler, W. Said-Ahmad, O. Sivan, W. Eckert, R. P. Kiene, A. Amrani, Isotopic evidence for the origin of dimethylsulfide and dimethylsulfoniopropionate-like compounds in a warm, monomictic freshwater lake Environ. Chem. 2016, 13, 340.
Isotopic evidence for the origin of dimethylsulfide and dimethylsulfoniopropionate-like compounds in a warm, monomictic freshwater lakeCrossref | GoogleScholarGoogle Scholar |

[21]  M. L. Espinosa, A. Martínez, O. Peralta, T. Castro, Spatial variability of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the southern Gulf of Mexico Environ. Chem. 2016, 13, 352.
Spatial variability of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the southern Gulf of MexicoCrossref | GoogleScholarGoogle Scholar |

[22]  T. Jarníkova, P. D. Tortell, Towards a revised climatology of summertime dimethylsulfide concentrations and sea–air fluxes in the Southern Ocean Environ. Chem. 2016, 13, 364.
Towards a revised climatology of summertime dimethylsulfide concentrations and sea–air fluxes in the Southern OceanCrossref | GoogleScholarGoogle Scholar |

[23]  I. Masotti, S. Belviso, L. Bopp, A. Tagliabue, E. Bucciarelli, Effects of light and phosphorus on summer DMS dynamics in subtropical waters using a global ocean biogeochemical model. J.E Environ. Chem. 2016, 13, 379.
Effects of light and phosphorus on summer DMS dynamics in subtropical waters using a global ocean biogeochemical model. J.ECrossref | GoogleScholarGoogle Scholar |

[24]  J. E. Tesdal, J. R. Christian, A. H. Monahan, K. von Salzen, Evaluation of diverse approaches for estimating sea-surface DMS concentration and air–sea exchange at global scale Environ. Chem. 2016, 13, 390.
Evaluation of diverse approaches for estimating sea-surface DMS concentration and air–sea exchange at global scaleCrossref | GoogleScholarGoogle Scholar |

[25]  B. Qu, A. J. Gabric, M. Zeng, Z. Lu, Dimethylsulfide model calibration in the Barents Sea using a genetic algorithm and neural network Environ. Chem. 2016, 13, 413.
Dimethylsulfide model calibration in the Barents Sea using a genetic algorithm and neural networkCrossref | GoogleScholarGoogle Scholar |