Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Phylogeny, historical biogeography and divergence time estimates of the genus Colophon Gray (Coleoptera : Lucanidae)

Angelika K. Switala A B , Catherine L. Sole A and Clarke H. Scholtz A
+ Author Affiliations
- Author Affiliations

A Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.

B Corresponding author. Email: akswitala@zoology.up.ac.za

Invertebrate Systematics 28(3) 326-336 https://doi.org/10.1071/IS13054
Submitted: 31 October 2013  Accepted: 28 March 2014   Published: 30 June 2014

Abstract

The flightless Cape High-mountain stag beetle genus Colophon (Coleoptera: Lucanidae) is studied. All species are endemic to the Cape Floristic Region of the Western Cape, South Africa. The study aimed to determine the specific and phylogenetic status of the described species of Colophon and to determine the main factors driving their evolution by testing the hypothesis of a lowland origin. This was achieved by analysing the mitochondrial COI, 16S rRNA and nuclear CAD genes, using a maximum likelihood and Bayesian approach. Timing of key biogeographical events in the diversification of Colophon was estimated in BEAST. The combined molecular dataset supports the described species. High genetic divergence was found between the described taxa. The mean estimated divergence of the genus was mid-Cretaceous, with a split into two lineages during the early Paleocene to mid Eocene. Species divergence was shown to have occurred during mid to late Miocene. Most species of Colophon showed an allopatric distribution, although contact zones between geographically adjacent species are likely. Climate seems to be the main driving factor behind Colophon evolution and the hypothesis of a lowland origin appears to be supported.


References

Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In ‘Second International Symposium on Information Theory’. (Eds B. N. Petrov and F. Csaki.) pp. 267–281. (AkademiaiKiado: Budapest, Hungary.)

Anonymous (1994). Analyses of proposals to amend the CITES appendices. In ‘Ninth Meeting of the Conference of the Parties, Fort Lauderdale (USA), 7–18 November 1994’. Prepared by the IUCN Species Survival Commission TRAFFIC Network.

Astrin, J. J., Stüben, P. E., Misof, B., Wägele, J. W., Gimnich, F., Raupach, M. J., and Ahrens, D. (2012). Exploring diversity in cryptorhynchine weevils (Coleoptera) using distance-, character- and tree-based species delineation. Molecular Phylogenetics and Evolution 63, 1–14.
Exploring diversity in cryptorhynchine weevils (Coleoptera) using distance-, character- and tree-based species delineation.Crossref | GoogleScholarGoogle Scholar | 22155423PubMed |

Avise, J. C., and Walker, D. (1999). Species realities and numbers in sexual vertebrates: perspectives from an asexually transmitted genome. Proceedings of the National Academy of Sciences of the United States of America 96, 992–995.
Species realities and numbers in sexual vertebrates: perspectives from an asexually transmitted genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpvFaisQ%3D%3D&md5=23e1e4b947e973cba5743cfdf0f90dabCAS | 9927681PubMed |

Barnard, K. H. (1929). A study of the genus Colophon Gray. Transactions of the Royal Society of South Africa 18, 163–182.
A study of the genus Colophon Gray.Crossref | GoogleScholarGoogle Scholar |

Barnard, K. H. (1932). The rediscovery of Colophon thunbergi Westw. with descriptions of further new species of the genus. Stylops 1, 169–174.

Barraclough, T. G. (2006). What can phylogenetics tell us about speciation in the Cape flora? Diversity & Distributions 12, 21–26.
What can phylogenetics tell us about speciation in the Cape flora?Crossref | GoogleScholarGoogle Scholar |

Bartolozzi, L. (1995). Description of a new species of Colophon from South Africa (Coleoptera, Lucanidae). Fragmenta Entomologica 26, 333–340.

Bartolozzi, L. (2005). Description of two new stag beetle species from South Africa (Coleoptera: Lucanidae). African Entomology 13, 347–352.

Browne, J., and Scholtz, C. H. (1999). A phylogeny of the families of Scarabaeoidea (Coleoptera). Systematic Entomology 24, 51–84.

Cowling, R. M. (Ed.) (1992). ‘The Ecology of Fynbos: Nutrients, Fire and Diversity.’ (Oxford University Press: Cape Town.)

Cowling, R. M., Procheş, S., and Partridge, T. (2009). Explaining the uniqueness of the Cape flora: Incorporating geomorphic evolution as a factor for explaining its diversification. Molecular Phylogenetics and Evolution 51, 64–74.
Explaining the uniqueness of the Cape flora: Incorporating geomorphic evolution as a factor for explaining its diversification.Crossref | GoogleScholarGoogle Scholar | 18691908PubMed |

Deacon, H. J., Jury, M. R., and Ellis, F. (1992). Selective regime and time. In ‘The Ecology of Fynbos: Nutrients, Fire and Diversity’. (Ed. R. M. Cowling.) pp. 6–22. (Oxford University Press: Cape Town.)

Didier, R., and Séguy, E. (1953). ‘Catalogue illustré des Lucanides du Globe.’ Texte. Encycl. ent., (A) 27, 1–223. (Paul Lachavalier, Paris.)

Dingle, R. V., Siesser, W. G., and Newton, A. R. (1983). ‘Mesozoic and Tertiary Geology Southern Africa.’ (Balkema: Rotterdam.)

Drummond, A., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Dupont, M. L., Linder, H. P., Rommerskirchen, F., and Schefuß, E. (2011). Climate-driven speciation of the Cape flora. Journal of Biogeography 38, 1059–1068.
Climate-driven speciation of the Cape flora.Crossref | GoogleScholarGoogle Scholar |

Endrödy-Younga, S. (1988). Evidence for the low-altitude origin of the Cape Mountain Biome derived from the systematic revision of the genus Colophon Gray (Coleoptera: Lucanidae). Annals of the South African Museum 96, 359–424.

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.
Confidence limits on phylogenies: an approach using the bootstrap.Crossref | GoogleScholarGoogle Scholar |

Galley, C., and Linder, H. P. (2006). Geographical affinities of the Cape flora, South Africa. Journal of Biogeography 33, 236–250.
Geographical affinities of the Cape flora, South Africa.Crossref | GoogleScholarGoogle Scholar |

Galley, C., Bytebier, B., Bellstedt, D. U., and Linder, H. P. (2007). The Cape element in the Afrotemperate flora: from Cape to Cairo? Proceedings. Biological Sciences 274, 535–543.
The Cape element in the Afrotemperate flora: from Cape to Cairo?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtF2itrw%3D&md5=c4afc2ffd46067f9d10c39b6b7da55daCAS |

Geertsema, H., and Owen, C. (2007). Notes on the habitat and adult behaviour of three red-listed Colophon spp. (Coleoptera: Lucanidae) of the Cape Floristic Region, South Africa. Journal of Insect Conservation 11, 43–46.
Notes on the habitat and adult behaviour of three red-listed Colophon spp. (Coleoptera: Lucanidae) of the Cape Floristic Region, South Africa.Crossref | GoogleScholarGoogle Scholar |

Gess, F. W., and Gess, S. K. (1993). Irresponsible collecting for financial gain. Letters African Wildlife 47, 187.

Giliomee, J. H. (2003). Insect diversity in the Cape Floristic Region. African Journal of Ecology 41, 237–244.
Insect diversity in the Cape Floristic Region.Crossref | GoogleScholarGoogle Scholar |

Goldblatt, P., and Manning, J. C. (2000). ‘Cape Plants. A Conspectus of the Cape Flora of South Africa.’ (National Botanical Institute: Pretoria.)

Good, R. (1953). ‘The Geography of the Flowering Plants.’ (Longmans, Green and Co.: London.)

Gray, G. R. (1832). New species of insects of all orders. In ‘The Animal Kingdom Arranged in Conformity with its Organization by Baron Cuvier.’ (Ed. E. Griffith.) (Whittaker, London.)

Hebert, P. D. N., Cywinska, A., Ball, S. L., and deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences 270, 313–321.
Biological identifications through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVWiu7g%3D&md5=6937f93aeb832a9058d1fe8b082d2953CAS |

Holloway, B. A. (1960). Taxonomy and phylogeny in Lucanidae. Records of Dominion Museum, Wellington 3, 321–365.

Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
MRBAYES: Bayesian inference of phylogenetic trees.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=ceab3d44bc74e85c441d4509c0328141CAS | 11524383PubMed |

Katoh, K., Asimenos, G., and Toh, H. (2009). Multiple alignment of DNA sequences with MAFFT. Methods in Molecular Biology (Clifton, N.J.) 537, 39–64.
Multiple alignment of DNA sequences with MAFFT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVSqtLc%3D&md5=f2ddda27b845e94674faa5afe2a31583CAS |

Krell, F. T. (2007). Catalogue of fossil Scarabaeoidea (Coleoptera: Polyphaga) of the Mesozoic and Tertiary. Version 2007. Denver Museum of Nature & Science Technical Report 8, 1–79.

Lacordaire, T. (1856). ‘Histoire naturelle des insects. Genera des coléoptères. Pectinicornes 3.’ (Roret: Paris.)

Linder, H. P. (2003). The radiation of the Cape flora, southern Africa. Biological Reviews of the Cambridge Philosophical Society 78, 597–638.
The radiation of the Cape flora, southern Africa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c%2FgsVWksg%3D%3D&md5=69d3ef7a0913e48002fe1aaa61f45eacCAS | 14700393PubMed |

Linder, H. P. (2005). Evolution of diversity: the Cape flora. Trends in Plant Science 10, 536–541.
Evolution of diversity: the Cape flora.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOmtLzE&md5=039084c4d87b65239ae3fbb601d8738dCAS | 16213780PubMed |

Linder, H. P., Johnson, S. D., Kuhlmann, M., Matthee, C. A., Nyffeler, R., and Swartz, E. R. (2010). Biotic diversity in the Southern African winter-rainfall region. Current Opinions in Environmental Sustainability 2, 109–116.
Biotic diversity in the Southern African winter-rainfall region.Crossref | GoogleScholarGoogle Scholar |

Lutjeharms, J. R. E., Monteiro, P. M. S., Tyson, P. D., and Obura, D. (2001). The oceans around southern Africa and regional effects of global change. South African Journal of Science 97, 119–130.

McDonald, D. E., and Daniels, S. R. (2012). Phylogeography of the Cape velvet worm (Onychophora: Peripatopsis capensis) reveals the impact of Pliocene/Pleistocene climatic oscillations on Afromontane forest in the Western Cape, South Africa. Journal of Evolutionary Biology 25, 824–835.
Phylogeography of the Cape velvet worm (Onychophora: Peripatopsis capensis) reveals the impact of Pliocene/Pleistocene climatic oscillations on Afromontane forest in the Western Cape, South Africa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vmtlCntA%3D%3D&md5=7fc390f92a2f088b02fca29103de0397CAS | 22409213PubMed |

McGeoch, M. A., Sithole, H., Samways, M. J., Simaika, J. P., Pryke, J. S., Picker, M., Uys, C., Armstrong, A. J., Dippenaar-Schoeman, A. S., Engelbrecht, I. A., Braschler, B., and Hamer, M. (2011). Conservation and monitoring of invertebrates in terrestrial protected areas. Koedoe 53, 137–149.
Conservation and monitoring of invertebrates in terrestrial protected areas.Crossref | GoogleScholarGoogle Scholar |

Meadows, M. E. (2006). Global change and southern Africa. Geographical Research 44, 135–145.
Global change and southern Africa.Crossref | GoogleScholarGoogle Scholar |

Melisch, R., and Schütz, P. (2000). Butterflies and beetles in Germany. Traffic Bulletin 18, 91–93.

Midgley, G. F., Reeves, G., and Klak, C. (2005) Late Tertiary and Quaternary climate change and centres of endemism in the southern African flora. In ‘Phylogeny and Conservation’. (Eds A. Purvis, J. L. Gittleman and T. Brooks.) pp. 23–42. (Cambridge University Press: Cambridge.)

Mizukami, T. (1996). A new species and subspecies of the genus Colophon from Republic of South Africa (Coleoptera, Lucanidae). Gekkan-Mushi 304, 22–25.

Mizukami, T., and Kawai, S. (1996a). Nature of the South Africa and ecological note on the genus Colophon Gray (Coleoptera, Lucanidae). Gekkan-Mushi 304, 11–21.

Mizukami, T., and Kawai, S. (1996b). Nature of the South Africa and ecological note on the genus Colophon Gray (Coleoptera, Lucanidae). Gekkan-Mushi 306, 18–27.

Mizukami, T., and Kawai, S. (1996c). Nature of the South Africa and ecological note on the genus Colophon Gray (Coleoptera, Lucanidae). Gekkan-Mushi 308, 14–23.

Mizukami, T., and Kawai, S. (1997a). Nature of the South Africa and ecological note on the genus Colophon Gray (Coleoptera, Lucanidae). Gekkan-Mushi 311, 25–33.

Mizukami, T., and Kawai, S. (1997b). Nature of the South Africa and ecological note on the genus Colophon Gray (Coleoptera, Lucanidae). Gekkan-Mushi 2, 1–80.

Mlambo, S., Sole, C. L., and Scholtz, C. H. (2011). Phylogeny of the African ball-rolling dung beetle genus Epirinus Reiche (Coleoptera: Scarabaeidae: Scarabaeinae). Invertebrate Systematics 25, 197–207.
Phylogeny of the African ball-rolling dung beetle genus Epirinus Reiche (Coleoptera: Scarabaeidae: Scarabaeinae).Crossref | GoogleScholarGoogle Scholar |

Moulton, J. K., and Wiegmann, B. M. (2004). Evolution and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged eremoneuran Diptera (Insecta). Molecular Phylogenetics and Evolution 31, 363–378.
Evolution and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged eremoneuran Diptera (Insecta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvFSksbw%3D&md5=0235e647933cf74820dac12fc647101aCAS | 15019631PubMed |

Mucina, L., and Rutherford, M. C. (Eds.) (2006). The vegetation of South Africa, South African National Biodiversity Institute, Lesotho and Swaziland. Strelitzia 19. (South African National Biodiversity Institute, Pretoria.)

New, T. R. (2009). ‘Insect Species Conservation.’ Ecology, Biodiversity and Conservation Series. (Cambridge University Press: Cambridge.)

New, T. R. (Ed.) (2012). ‘Insect Conservation: Past, Present and Prospects.’ (Springer: London.)

Nylander, J. A. A. (2004) MrModeltest, Ver. 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala. Available at http://www.abc.se/~nylander/

Parry, F. J. S. (1864). A catalogue of lucanoid Coleoptera, with illustrations and descriptions of various new and interesting species. Transactions of the Entomological Society of London 3, 1–113.

Partridge, T. C., and Maud, R. R. (Eds.) (2000). ‘The Cenozoic of Southern Africa.’ (Oxford University Press: Oxford.)

Piton, L. (1940). Paléontologie du gisement éocène de Menat (Puy-de-Dôme) (Flore et Faune). (Lechevalier, Paris.)

Procheş, S., and Cowling, R. M. (2006). Insect diversity in Cape fynbos and neighbouring South African vegetation. Global Ecology and Biogeography 15, 445–451.
Insect diversity in Cape fynbos and neighbouring South African vegetation.Crossref | GoogleScholarGoogle Scholar |

Ritcher, P. O. (1966). ‘White Grubs and their Allies. A study of North American Scarabaeoid Larvae.’ (Oregon University Press: Corvallis, OR.)

Roets, F., Pryke, J. S., and McGeoch, M. A. (2013). Abiotic variables dictate the best monitoring times for the endangered Table Mountain stag beetle (Colophon westwoodi Gray 1832, Coleoptera: Lucanidae). Journal of Insect Conservation 17, 279–285.
Abiotic variables dictate the best monitoring times for the endangered Table Mountain stag beetle (Colophon westwoodi Gray 1832, Coleoptera: Lucanidae).Crossref | GoogleScholarGoogle Scholar |

Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
| 1:STN:280:DyaL1c7ovFSjsA%3D%3D&md5=75e0f8c05fd7ca12222cc3b415ead9b7CAS | 3447015PubMed |

Samways, M. J., Hamer, M., and Veldtman, R. (2012). Development and future of insect conservation in South Africa. In ‘Insect Conservation: Past, Present and Prospect’. (Ed. T. R. New.) pp 245–278. (Springer: London.)

San Mauro, D., and Agorreta, A. (2010). Molecular systematics: a synthesis of the common methods and the state of knowledge. Cellular & Molecular Biology Letters 15, 311–341.
Molecular systematics: a synthesis of the common methods and the state of knowledge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1antL8%3D&md5=43073b09b76fce8f71276dd7ab4dd54cCAS |

Scholtz, C. H., and Endrödy-Younga, S. (1994). Systematic position of Colophon Gray (Coleoptera: Lucanidae), based on larval characters. African Entomology 2, 13–20.

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
| 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=d5c73c20640b01d4cb1718c8d993d994CAS |

Smith, A. B., Hawks, D. C., and Heraty, J. M. (2006). An overview of the classification and evolution of the major scarab beetle clades (Coleoptera: Scarabaeoidea) based on preliminary molecular analyses. Coleopterists Bulletin 60, 35–46.
An overview of the classification and evolution of the major scarab beetle clades (Coleoptera: Scarabaeoidea) based on preliminary molecular analyses.Crossref | GoogleScholarGoogle Scholar |

Sole, C. L., and Scholtz, C. H. (2010). Did dung beetles arise in Africa? A phylogenetic hypothesis based on five gene regions. Molecular Phylogenetics and Evolution 56, 631–641.
Did dung beetles arise in Africa? A phylogenetic hypothesis based on five gene regions.Crossref | GoogleScholarGoogle Scholar | 20416384PubMed |

Sole, C. L., and Scholtz, C. H. (2013). Phylogeographic pointers to conservation needs: South Africa’s flagship dung beetle, Circellium bacchus. Insect conservation and Diversity 6, 549–560.
Phylogeographic pointers to conservation needs: South Africa’s flagship dung beetle, Circellium bacchus.Crossref | GoogleScholarGoogle Scholar |

Sole, C. L., Scholtz, C. H., Ball, J. B., and Mansell, M. W. (2013). Phylogeny and biogeography of South African spoon-winged lacewings (Neuroptera: Nemopteridae: Nemopterinae). Molecular Phylogenetics and Evolution 66, 360–368.
Phylogeny and biogeography of South African spoon-winged lacewings (Neuroptera: Nemopteridae: Nemopterinae).Crossref | GoogleScholarGoogle Scholar | 23085135PubMed |

Swart, B. L., Tolley, K. A., and Matthee, C. A. (2009). Climate change drives speciation in the southern rock agama (Agama atra) in the Cape Floristic Region, South Africa. Journal of Biogeography 36, 78–87.
Climate change drives speciation in the southern rock agama (Agama atra) in the Cape Floristic Region, South Africa.Crossref | GoogleScholarGoogle Scholar |

Swofford, D. L. (2003). PAUP*: Phylogenetic Analysis Using Parsimony (and other methods), Ver. 4. (Sinauer Associates: Sunderland, MA.)

Takhtajan, A. (1986). ‘Floristic Regions of the World.’ (University of California Press: Berkeley, CA.)

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=5ee5a71f721d24a7782516dc0ff5fcfcCAS | 21546353PubMed |

Tolley, K. A., Burger, M., Turner, A. A., and Matthee, C. A. (2006). Biogeographic patterns and phylogeography of dwarf chameleons (Bradypodion) in an African biodiversity hotspot. Molecular Ecology 15, 781–793.
Biogeographic patterns and phylogeography of dwarf chameleons (Bradypodion) in an African biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar | 16499702PubMed |

Tolley, K. A., Makokha, J. S., Houniet, D. T., Swart, B. L., and Matthee, C. L. (2009). The potential for predicted climate shifts to impact genetic landscapes of lizards in the South African Cape Floristic Region. Molecular Phylogenetics and Evolution 51, 120–130.
The potential for predicted climate shifts to impact genetic landscapes of lizards in the South African Cape Floristic Region.Crossref | GoogleScholarGoogle Scholar | 19071224PubMed |

Tyson, P. D., and Partridge, T. C. (2000). Evolution of Cenozoic climates. In ‘The Cenozoic of Southern Africa’. (Eds T. C. Partridge and R. R. Maud.) pp. 371–387. (Oxford University Press: Oxford.)

Verboom, G. A., Archibald, J. K., Bakker, F. T., Bellstedt, D. U., Conrad, F., Dreyer, L. L., Forest, F., Galley, C., Goldblatt, P., Henning, J. F., Mummenhoff, K., Linder, H. P., Muasya, A. M., Oberlander, K. C., Savolainen, V., Snijman, D. A., Van Der Niet, T., and Nowell, T. L. (2009). Origin and diversification of the greater Cape flora: ancient species repository, hot-bed of recent radiation, or both? Molecular Phylogenetics and Evolution 51, 44–53.
Origin and diversification of the greater Cape flora: ancient species repository, hot-bed of recent radiation, or both?Crossref | GoogleScholarGoogle Scholar | 18411064PubMed |

Wahlberg, N., and Wheat, C. W. (2008). Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Systematic Biology 57, 231–242.
Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymsr%2FL&md5=6943f8f1fbdb8d9e6cf15bd664b3115fCAS | 18398768PubMed |

Westwood, J. O. (1855). Descriptions of some new species of exotic Lucanidae. Transactions of the Entomological Society of London 3, 197–221.

Wikström, N., Savolainen, V., and Chase, M. W. (2001). Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London. Series B, Biological Sciences 268, 2211–2220.
Evolution of the angiosperms: calibrating the family tree.Crossref | GoogleScholarGoogle Scholar |

Wild, A. L., and Maddison, D. R. (2008). Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. Molecular Phylogenetics and Evolution 48, 877–891.
Evaluating nuclear protein-coding genes for phylogenetic utility in beetles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVyntL3M&md5=84160381763a03d2ace16f67f576d908CAS | 18644735PubMed |

Winterton, S. L., Hardy, N. B., and Wiegman, B. M. (2010). On wings of lace: phylogeny and Bayesian divergence time estimates of Neuropterida (Insecta) based on morphological and molecular data. Systematic Entomology 35, 349–378.
On wings of lace: phylogeny and Bayesian divergence time estimates of Neuropterida (Insecta) based on morphological and molecular data.Crossref | GoogleScholarGoogle Scholar |