CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate Reproductive Science & Technology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


Article << Previous     |     Next >>   Contents Vol 23(5)

Boar semen can tolerate rapid cooling rates prior to freezing

Jorge D. Juarez A B, Inma Parrilla A, Juan M. Vazquez A, Emilio A. Martinez A and Jordi Roca A C

A Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, E-30100 Murcia, Spain.
B Department of Livestock Science, Universidad Nacional Agraria de la Selva, Tingo María, Huánuco, Perú.
C Corresponding author. Email: roca@um.es

Reproduction, Fertility and Development 23(5) 681-690 http://dx.doi.org/10.1071/RD10216
Submitted: 6 September 2010  Accepted: 27 January 2011   Published: 17 May 2011

PDF (153 KB) $25
 Export Citation

Two experiments were performed in the present study that demonstrated that boar spermatozoa are capable of surviving rapid cooling rates within a range of 15–5°C before freezing. Boar ejaculates diluted in Beltsville thawing solution (BTS) (1 : 1, v/v) were held at 17–20°C and shipped over a 24-h time period from two AI centres to a cryobiology laboratory, where they were pooled (Experiment 1) or cryopreserved individually (Experiment 2) using a standard 0.5-mL straw freezing protocol. The effects of cooling before freezing were assessed after thawing through the objective evaluation of sperm motility and flow cytometric analysis of membrane integrity, acrosomal status, changes in membrane lipid architecture monitored by merocyanine and annexin V binding and intracellular production of reactive oxygen species. In Experiment 1 (six replicates), two semen pools (five ejaculates per pool) were cooled from 15 to 5°C at rates of 0.08, 0.13, 0.40 and 1.50°C min–1. These cooling rates did not result in any significant differences (P > 0.05) in any of the post-thaw sperm assessments, even in thawed samples incubated under capacitation conditions. In Experiment 2, three individual ejaculates from 16 boars were slowly (0.08°C min–1) or rapidly (1.5°C min–1) cooled before freezing. A consistent interboar variability (P < 0.01) was detected, which was independent of the cooling rate used. Cooling rate only significantly influenced (P < 0.05) sperm assessments in four of 16 boars, which exhibited slightly higher percentages of motile cells and intact plasma and acrosomal membranes in the samples that had been cooled slowly. These findings demonstrate that boar spermatozoa undergoing cryopreservation can withstand rapid cooling rates before freezing.

Additional keywords: flow cytometry, freezability, spermatozoa.


Aitken, R. J., Harkiss, D., Knox, W., Paterson, M., and Irvine, D. S. (1998). A novel signal transduction cascade in capacitating human spermatozoa characterized by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J. Cell Sci. 111, 645–656.
| CAS | PubMed |

Bwanga, C. O. (1991). Cryopreservation of boar semen. I: A literature review. Acta Vet. Scand. 32, 431–453.
| CAS | PubMed |

Caballero, I., Vazquez, J. M., Mayor, G. M., Almiñana, C., Calvete, J. J., Sanz, L., Roca, J., and Martinez, E. A. (2009). PSP-I/PSP-II spermadhesin exert a decapacitation effect on highly extended boar spermatozoa. Int. J. Androl. 32, 505–513.
CrossRef | CAS | PubMed |

Chiba, L. I. (2009). Pig nutrition and feeding. In ‘Animal Nutrition Handbook’. (Ed. L. I. Chiba.) pp. 285–315. (Auburn University: Auburn, AL.)

Colás, C., Junquera, C., Perez-Pe, R., Cebrian-Perez, J. A., and Muiño-Blanco, T. (2009). Ultrastructural study of the ability of seminal plasma proteins to protect ram spermatozoa against cold-shock. Microsc. Res. Tech. 72, 566–572.
CrossRef | PubMed |

Cremades, T., Roca, J., Rodriguez-Martinez, H., Abaigar, T., Vazquez, J. M., and Martinez, E. A. (2005). Kinematic changes during the cryopreservation of boar spermatozoa. J. Androl. 26, 610–618.
CrossRef | PubMed |

de Lamirande, E., and O’Flaherty, C. (2008). Sperm activation: role of reactive oxygen species and kinases. Biochim. Biophys. Acta 1784, 106–115.
| CAS | PubMed |

Drobnis, E. Z., Crowe, L. M., Berger, T., Anchordoguy, T. J., Overstreet, J. W., and Crowe, J. H. (1993). Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J. Exp. Zool. 265, 432–437.
CrossRef | CAS | PubMed |

Eriksson, B. M., Vazquez, J. M., Martinez, E. A., Roca, J., Lucas, X., and Rodriguez-Martinez, H. (2001). Effects of holding time during cooling and of type of package on plasma membrane integrity, motility and in vitro oocyte penetration ability of frozen–thawed boar spermatozoa. Theriogenology 55, 1593–1605.
CrossRef | CAS | PubMed |

Green, C. E., and Watson, P. F. (2001). Comparison of the capacitation-like state of cooled boar spermatozoa with true capacitation. Reproduction 122, 889–898.
CrossRef | CAS | PubMed |

Guthrie, H. D., and Welch, G. R. (2005). Impact of storage prior to cryopreservation on plasma membrane function and fertility of boar sperm. Theriogenology 63, 396–410.
CrossRef | CAS | PubMed |

Guthrie, H. D., and Welch, G. R. (2006). Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. J. Anim. Sci. 84, 2089–2100.
CrossRef | CAS | PubMed |

Harrison, R. A. P., Ashworth, P. J., and Miller, N. G. (1996). Bicarbonate/CO2, an effector of capacitation, induces a rapid and reversible change in the lipid architecture of boar sperm plasma membranes. Mol. Reprod. Dev. 45, 378–391.
CrossRef | CAS | PubMed |

Hernandez, M., Roca, J., Calvete, J. J., Sanz, L., Muiño-Blanco, T., Cebrian-Perez, J. A., Vazquez, J. M., and Martinez, E. A. (2007a). Cryosurvival and in vitro fertilizing capacity postthaw is improved when boar spermatozoa are frozen in the presence of seminal plasma from good freezer boars. J. Androl. 28, 689–697.
CrossRef | PubMed |

Hernandez, M., Roca, J., Gil, M. A., Vazquez, J. M., and Martinez, E. A. (2007b). Adjustments on the cryopreservation conditions reduces the incidence of boar ejaculates with poor sperm freezability. Theriogenology 67, 1436–1445.
CrossRef | PubMed |

Holt, W. V., Medrano, A., Thurston, L. M., and Watson, P. F. (2005). The significance of cooling rates and animal variability for boar sperm cryopreservation: insights from the cryomicroscope. Theriogenology 63, 370–382.
CrossRef | PubMed |

Januskauskas, A., Gil, J., Söderquist, L., Håård, M. G. M., Håård, M. Ch., Johannisson, A., and Rodriguez-Martinez, H. (1999). Effect of cooling rates on post-thaw sperm motility, membrane integrity, capacitation status and fertility of dairy bull semen used for artificial insemination in Sweden. Theriogenology 52, 641–658.
CrossRef | CAS | PubMed |

Jobim, M. I. M., Oberst, E. R., Salbego, C. G., Souza, D. O., Wald, V. B., Tramontina, F., and Mattos, R. C. (2004). Two-dimensional polyacrylamide gel electrophoresis of bovine seminal plasma proteins and their relation with semen freezability. Theriogenology 61, 255–266.
CrossRef | CAS | PubMed |

Johnson, L. A., Weitze, K. F., Fiser, P., and Maxwell, W. M. C. (2000). Storage of boar semen. Anim. Reprod. Sci. 62, 143–172.
CrossRef | CAS | PubMed |

Leibo, S. P., Kubisch, H. M., Schramm, R. D., Harrison, R. M., and VandeVoort, C. A. (2007). Male-to-male differences in post-thaw motility of rhesus spermatozoa after cryopreservation of replicate ejaculates. J. Med. Primatol. 36, 151–163.
CrossRef | CAS | PubMed |

Maxwell, W. M. C., de Graaf, S. P., Ghaoui, Rel.-H., and Evans, G. (2007). Seminal plasma effects on sperm handling and female fertility. Soc. Reprod. Fertil. Suppl. 64, 13–38.
| CAS | PubMed |

Medeiros, C. M. O., Forell, F., Oliveira, A. T. D., and Rodrigues, J. L. (2002). Current status of sperm cryopreservation: why isn’t it better? Theriogenology 57, 327–344.
CrossRef | CAS | PubMed |

Medrano, A., Watson, P. F., and Holt, W. V. (2002). Importance of cooling rate and animal variability for boar sperm cryopreservation: insights from the cryomicroscope. Reproduction 123, 315–322.
CrossRef | CAS | PubMed |

Nagy, S., Jansen, J., Topper, E. K., and Gadella, B. M. (2003). A triple-stain flow cytometric method to assess plasma and acrosome membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol. Reprod. 68, 1828–1835.
CrossRef | CAS | PubMed |

Parks, J. E., and Lynch, D. V. (1992). Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology 29, 255–266.
CrossRef | CAS | PubMed |

Peña, F. J., Johannisson, A., Wallgren, M., and Rodriguez-Martinez, H. (2003). Assessment of fresh and frozen–thawed boar semen using an annexin-V assay: a new method of evaluating sperm membrane integrity. Theriogenology 60, 677–689.
CrossRef | PubMed |

Petrunkina, A. M., and Harrison, R. A. P. (2010). Systematic misestimation of cell subpopulations by flow cytometry: a mathematical analysis. Theriogenology 73, 839–847.
CrossRef | CAS | PubMed |

Petrunkina, A. M., Waberski, D., Bollwein, H., and Sieme, H. (2010). Identifying non-sperm particles during flow cytometric physiological assessment: a simple approach. Theriogenology 73, 995–1000.
CrossRef | CAS | PubMed |

Popwell, J. M., and Flowers, W. L. (2004). Variability in relationships between semen quality and estimates of in vivo and in vitro fertility in boars. Anim. Reprod. Sci. 81, 97–113.
CrossRef | CAS | PubMed |

Pursel, V. G., Johnson, L. A., and Schulman, L. L. (1972). Interaction of extender composition and incubation period on cold shock susceptibility of boar spermatozoa. J. Anim. Sci. 35, 580–584.
| CAS | PubMed |

Rath, D., Bathgate, R., Rodriguez-Martinez, H., Roca, J., Strzezek, J., and Waberski, D. (2009). Recent advances in boar semen cryopreservation. Soc. Reprod. Fertil. Suppl. 66, 51–66.
| CAS | PubMed |

Roca, J., Hernandez, M., Carvajal, G., Vazquez, J. M., and Martinez, E. A. (2006). Factors influencing boar sperm cryosurvival. J. Anim. Sci. 84, 2692–2699.
CrossRef | CAS | PubMed |

Saravia, F., Hernandez, M., Wallgren, M., Johannisson, A., and Rodriguez-Martinez, H. (2007). Controlled cooling during semen cryopreservation does not induce capacitation of spermatozoa from two portions of the boar ejaculate. Int. J. Androl. 30, 485–499.
CrossRef | CAS | PubMed |

Saravia, F., Wallgren, M., Johannisson, A., Calvete, J. J., Sanz, L., Peña, F. J., Roca, J., and Rodríguez-Martínez, H. (2009). Exposure to the seminal plasma of different portions of the boar ejaculate modulates the survival of spermatozoa cryopreserved in MiniFlatPacks. Theriogenology 71, 662–675.
CrossRef | CAS | PubMed |

Schmidt, H., and Kamp, G. (2004). Induced hyperactivity in boar spermatozoa and its evaluation by computer-assisted sperm analysis. Reproduction 128, 171–179.
CrossRef | CAS | PubMed |

Suarez, S. S. (2008). Control of hyperactivation in sperm. Hum. Reprod. Update 14, 647–657.
CrossRef | CAS | PubMed |

Tamuli, M. K., and Watson, P. F. (1994). Cold resistance of live boar spermatozoa during incubation after ejaculation. Vet. Rec. 135, 160–162.
CrossRef | CAS | PubMed |

Tardif, S., Dubé, C., Chevalier, S., and Bailey, J. L. (2001). Capacitation is associated with tyrosine phosphorylation and tyrosine kinase-like activity of pig sperm proteins. Biol. Reprod. 65, 784–792.
CrossRef | CAS | PubMed |

Thurston, L. M., Siggins, K., Mileham, A. J., Watson, P. F., and Holt, W. V. (2002). Identification of amplified restriction fragment length polymorphism markers linked to genes controlling boar sperm viability following cryopreservation. Biol. Reprod. 66, 545–554.
CrossRef | CAS | PubMed |

Vadnais, M. L., and Roberts, K. P. (2007). Effects of seminal plasma on cooling-induced capacitative changes in boar sperm. J. Androl. 28, 416–422.
CrossRef | CAS | PubMed |

Watson, P. F. (1995). Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod. Fertil. Dev. 7, 871–891.
CrossRef | CAS | PubMed |

Watson, P. F. (2000). The causes of reduced fertility with cryopreserved semen. Anim. Reprod. Sci. 60–61, 481–492.
CrossRef | PubMed |

Zahn, F. S., Papa, F. O., Melo, C. M., and Brisola, M. L. (2005). Protein profile of equine seminal plasma: correlation to semen freezability. Anim. Reprod. Sci. 89, 313–315.
| CAS | PubMed |

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016