CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Reproduction, Fertility and Development   
Reproduction, Fertility and Development
Journal Banner
  Vertebrate Reproductive Science & Technology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our email Early Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Connect with SRB
blank image
facebook TwitterIcon

Affiliated Societies

RFD is the official journal of the International Embryo Transfer Society and the Society for Reproductive Biology.


 

Article << Previous     |     Next >>        Online Early    

Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development

Young-Joo Yi A C D , Miriam Sutovsky A , Won-Hee Song A and Peter Sutovsky A B

A Division of Animal Sciences, University of Missouri, S141 ASRC, 920 East Campus Drive, Columbia, MO65211-5300, USA.
B Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, S141 ASRC, 920 East Campus Drive, Columbia, MO65211-5300, USA.
C Division of Biotechnology, College of Environmental and Bioresources Sciences, Chonbuk National University, Gobong-ro 79, Iksan-si, Jeollabuk-do 570-752, Korea.
D Corresponding author. Email: yiyj@jbnu.ac.kr

Reproduction, Fertility and Development - http://dx.doi.org/10.1071/RD14012
Submitted: 14 January 2014  Accepted: 8 April 2014   Published online: 22 May 2014


 
PDF (1.6 MB) $25
 Supplementary Material
 Export Citation
 Print
  
Abstract

Ubiquitination is a covalent post-translational modification of proteins by the chaperone protein ubiquitin. Upon docking to the 26S proteasome, ubiquitin is released from the substrate protein by deubiquitinating enzymes (DUBs). We hypothesised that specific inhibitors of two closely related oocyte DUBs, namely inhibitors of the ubiquitin C-terminal hydrolases (UCH) UCHL1 (L1 inhibitor) and UCHL3 (L3 inhibitor), would alter porcine oocyte maturation and influence sperm function and embryo development. Aberrant cortical granule (CG) migration and meiotic spindle defects were observed in oocytes matured with the L1 or L3 inhibitor. Embryo development was delayed or blocked in oocytes matured with the general DUB inhibitor PR-619. Aggresomes, the cellular stress-inducible aggregates of ubiquitinated proteins, formed in oocytes matured with L1 inhibitor or PR-619, a likely consequence of impaired protein turnover. Proteomic analysis identified the major vault protein (MVP) as the most prominent protein accumulated in oocytes matured with PR-619, suggesting that the inhibition of deubiquitination altered the turnover of MVP. The mitophagy/autophagy of sperm-contributed mitochondria inside the fertilised oocytes was hindered by DUB inhibitors. It is concluded that DUB inhibitors alter porcine oocyte maturation, fertilisation and preimplantation embryo development. By regulating the turnover of oocyte proteins and mono-ubiquitin regeneration, the DUBs may promote the acquisition of developmental competence during oocyte maturation.

Additional keywords: pig, ubiquitin, UCHL1, UCHL3.


References

Abeydeera, L. R., Wang, W. H., Prather, R. S., and Day, B. N. (1998). Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro. Biol. Reprod. 58, 1316–1320.
CrossRef | CAS | CAS | PubMed |

Al Rawi, S., Louvet-Vallee, S., Djeddi, A., Sachse, M., Culetto, E., Hajjar, C., Boyd, L., Legouis, R., and Galy, V. (2011). Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334, 1144–1147.
CrossRef | CAS | PubMed |

Al Rawi, S., Louvet-Vallee, S., Djeddi, A., Sachse, M., Culetto, E., Hajjar, C., Boyd, L., Legouis, R., and Galy, V. (2012). Allophagy: a macroautophagic process degrading spermatozoid-inherited organelles. Autophagy 8, 421–423.
CrossRef | PubMed |

Altun, M., Kramer, H. B., Willems, L. I., McDermott, J. L., Leach, C. A., Goldenberg, S. J., Kumar, K. G., Konietzny, R., Fischer, R., Kogan, E., Mackeen, M. M., McGouran, J., Khoronenkova, S. V., Parsons, J. L., Dianov, G. L., Nicholson, B., and Kessler, B. M. (2011). Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes. Chem. Biol. 18, 1401–1412.
CrossRef | CAS | CAS | PubMed |

Bheda, A., Gullapalli, A., Caplow, M., Pagano, J. S., and Shackelford, J. (2010). Ubiquitin editing enzyme UCH L1 and microtubule dynamics: implication in mitosis. Cell Cycle 9, 980–994.
CrossRef | CAS | CAS | PubMed |

Bjørkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Øvervatn, A., Stenmark, H., and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614.
CrossRef | PubMed |

Chung, C. H., and Baek, S. H. (1999). Deubiquitinating enzymes: their diversity and emerging roles. Biochem. Biophys. Res. Commun. 266, 633–640.
CrossRef | CAS | CAS | PubMed |

D’Andrea, A., and Pellman, D. (1998). Deubiquitinating enzymes: a new class of biological regulators. Crit. Rev. Biochem. Mol. Biol. 33, 337–352.
CrossRef | CAS | CAS | PubMed |

Day, I. N., and Thompson, R. J. (1987). Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells. FEBS Lett. 210, 157–160.
CrossRef | CAS | CAS | PubMed |

Ellederova, Z., Halada, P., Man, P., Kubelka, M., Motlik, J., and Kovarova, H. (2004). Protein patterns of pig oocytes during in vitro maturation. Biol. Reprod. 71, 1533–1539.
CrossRef | CAS | CAS | PubMed |

Gong, L., Kamitani, T., Millas, S., and Yeh, E. T. (2000). Identification of a novel isopeptidase with dual specificity for ubiquitin- and NEDD8-conjugated proteins. J. Biol. Chem. 275, 14 212–14 216.
CrossRef | CAS | CAS |

Hjerpe, R., Aillet, F., Lopitz-Otsoa, F., Lang, V., England, P., and Rodriguez, M. S. (2009). Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep. 10, 1250–1258.
CrossRef | CAS | CAS | PubMed |

Huo, L. J., Fan, H. Y., Zhong, Z. S., Chen, D. Y., Schatten, H., and Sun, Q. Y. (2004). Ubiquitin-proteasome pathway modulates mouse oocyte meiotic maturation and fertilization via regulation of MAPK cascade and cyclin B1 degradation. Mech. Dev. 121, 1275–1287.
CrossRef | CAS | CAS | PubMed |

Huo, L. J., Zhong, Z. S., Liang, C. G., Wang, Q., Yin, S., Ai, J. S., Yu, L. Z., Chen, D. Y., Schatten, H., and Sun, Q. Y. (2006). Degradation of securin in mouse and pig oocytes is dependent on ubiquitin-proteasome pathway and is required for proteolysis of the cohesion subunit, Rec8, at the metaphase-to-anaphase transition. Front. Biosci. 11, 2193–2202.
CrossRef | CAS | CAS | PubMed |

Johansen, T., and Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279–296.
CrossRef | CAS | CAS | PubMed |

Johnston, J. A., Ward, C. L., and Kopito, R. R. (1998). Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898.
CrossRef | CAS | CAS | PubMed |

Josefsberg, L. B., Galiani, D., Dantes, A., Amsterdam, A., and Dekel, N. (2000). The proteasome is involved in the first metaphase-to-anaphase transition of meiosis in rat oocytes. Biol. Reprod. 62, 1270–1277.
CrossRef | CAS | CAS | PubMed |

Kickhoefer, V. A., and Rome, L. H. (1994). The sequence of a cDNA encoding the major vault protein from Rattus norvegicus. Gene 151, 257–260.
CrossRef | CAS | CAS | PubMed |

Kolli, S., Zito, C. I., Mossink, M. H., Wiemer, E. A., and Bennett, A. M. (2004). The major vault protein is a novel substrate for the tyrosine phosphatase SHP-2 and scaffold protein in epidermal growth factor signaling. J. Biol. Chem. 279, 29 374–29 385.
CrossRef | CAS | CAS |

Koyanagi, S., Hamasaki, H., Sekiguchi, S., Hara, K., Ishii, Y., Kyuwa, S., and Yoshikawa, Y. (2012). Effects of ubiquitin C-terminal hydrolase L1 deficiency on mouse ova. Reproduction 143, 271–279.
CrossRef | CAS | CAS | PubMed |

Kurihara, L. J., Semenova, E., Levorse, J. M., and Tilghman, S. M. (2000). Expression and functional analysis of Uch-L3 during mouse development. Mol. Cell. Biol. 20, 2498–2504.
CrossRef | CAS | CAS | PubMed |

Kurz, T., Pintard, L., Willis, J. H., Hamill, D. R., Gonczy, P., Peter, M., and Bowerman, B. (2002). Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway. Science 295, 1294–1298.
CrossRef | CAS | CAS | PubMed |

Kwon, J., Kikuchi, T., Setsuie, R., Ishii, Y., Kyuwa, S., and Yoshikawa, Y. (2003). Characterization of the testis in congenitally ubiquitin carboxy-terminal hydrolase-1 (Uch-L1) defective (gad) mice. Exp. Anim. 52, 1–9.
CrossRef | CAS | CAS | PubMed |

Kwon, J., Wang, Y. L., Setsuie, R., Sekiguchi, S., Sakurai, M., Sato, Y., Lee, W. W., Ishii, Y., Kyuwa, S., Noda, M., Wada, K., and Yoshikawa, Y. (2004). Developmental regulation of ubiquitin C-terminal hydrolase isozyme expression during spermatogenesis in mice. Biol. Reprod. 71, 515–521.
CrossRef | CAS | CAS | PubMed |

Li, L., Baibakov, B., and Dean, J. (2008). A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev. Cell 15, 416–425.
CrossRef | CAS | CAS | PubMed |

Liu, Y., Lashuel, H. A., Choi, S., Xing, X., Case, A., Ni, J., Yeh, L. A., Cuny, G. D., Stein, R. L., and Lansbury, P. T. (2003). Discovery of inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung cancer cell line. Chem. Biol. 10, 837–846.
CrossRef | CAS | CAS | PubMed |

Mtango, N. R., and Latham, K. E. (2007). Ubiquitin proteasome pathway gene expression varies in rhesus monkey oocytes and embryos of different developmental potential. Physiol. Genomics 31, 1–14.
CrossRef | CAS | CAS | PubMed |

Mtango, N. R., Sutovsky, M., Susor, A., Zhong, Z., Latham, K. E., and Sutovsky, P. (2012a). Essential role of maternal UCHL1 and UCHL3 in fertilization and preimplantation embryo development. J. Cell. Physiol. 227, 1592–1603.
CrossRef | CAS | CAS | PubMed |

Mtango, N. R., Sutovsky, M., Vandevoort, C. A., Latham, K. E., and Sutovsky, P. (2012b). Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation. J. Cell. Physiol. 227, 2022–2029.
CrossRef | CAS | CAS | PubMed |

Novak, S., Paradis, F., Savard, C., Tremblay, K., and Sirard, M. A. (2004). Identification of porcine oocyte proteins that are associated with somatic cell nuclei after co-incubation. Biol. Reprod. 71, 1279–1289.
CrossRef | CAS | CAS | PubMed |

Ohsugi, M., Zheng, P., Baibakov, B., Li, L., and Dean, J. (2008). Maternally derived FILIA–MATER complex localizes asymmetrically in cleavage-stage mouse embryos. Development 135, 259–269.
CrossRef | CAS | CAS | PubMed |

Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24 131–24 145.
CrossRef | CAS | CAS |

Sato, M., and Sato, K. (2011). Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144.
CrossRef | CAS | CAS | PubMed |

Scheffer, G. L., Schroeijers, A. B., Izquierdo, M. A., Wiemer, E. A., and Scheper, R. J. (2000). Lung resistance-related protein/major vault protein and vaults in multidrug-resistant cancer. Curr. Opin. Oncol. 12, 550–556.
CrossRef | CAS | PubMed |

Seiberlich, V., Goldbaum, O., Zhukareva, V., and Richter-Landsberg, C. (2012). The small molecule inhibitor PR-619 of deubiquitinating enzymes affects the microtubule network and causes protein aggregate formation in neural cells: implications for neurodegenerative diseases. Biochim. Biophys. Acta 1823, 2057–2068.
CrossRef | CAS | CAS | PubMed |

Sekiguchi, S., Kwon, J., Yoshida, E., Hamasaki, H., Ichinose, S., Hideshima, M., Kuraoka, M., Takahashi, A., Ishii, Y., Kyuwa, S., Wada, K., and Yoshikawa, Y. (2006). Localization of ubiquitin C-terminal hydrolase L1 in mouse ova and its function in the plasma membrane to block polyspermy. Am. J. Pathol. 169, 1722–1729.
CrossRef | CAS | CAS | PubMed |

Sims, J. J., Scavone, F., Cooper, E. M., Kane, L. A., Youle, R. J., Boeke, J. D., and Cohen, R. E. (2012). Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling. Nat. Methods 9, 303–309.
CrossRef | CAS | CAS | PubMed |

Sun, Z. G., Kong, W. H., Zhang, Y. J., Yan, S., Lu, J. N., Gu, Z., Lin, F., and Tso, J. K. (2002). A novel ubiquitin carboxyl terminal hydrolase is involved in toad oocyte maturation. Cell Res. 12, 199–206.
CrossRef | PubMed |

Susor, A., Ellederova, Z., Jelinkova, L., Halada, P., Kavan, D., Kubelka, M., and Kovarova, H. (2007). Proteomic analysis of porcine oocytes during in vitro maturation reveals essential role for the ubiquitin C-terminal hydrolase-L1. Reproduction 134, 559–568.
CrossRef | CAS | CAS | PubMed |

Susor, A., Liskova, L., Toralova, T., Pavlok, A., Pivonkova, K., Karabinova, P., Lopatarova, M., Sutovsky, P., and Kubelka, M. (2010). Role of ubiquitin C-terminal hydrolase-L1 in antipolyspermy defense of mammalian oocytes. Biol. Reprod. 82, 1151–1161.
CrossRef | CAS | CAS | PubMed |

Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (1999). Ubiquitin tag for sperm mitochondria. Nature 402, 371–372.
CrossRef | CAS | CAS | PubMed |

Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (2000). Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol. Reprod. 63, 582–590.
CrossRef | CAS | CAS | PubMed |

Sutovsky, P., McCauley, T. C., Sutovsky, M., and Day, B. N. (2003). Early degradation of paternal mitochondria in domestic pig (Sus scrofa) is prevented by selective proteasomal inhibitors lactacystin and MG132. Biol. Reprod. 68, 1793–1800.
CrossRef | CAS | CAS | PubMed |

Sutovsky, P., Manandhar, G., Laurincik, J., Letko, J., Caamaño, J. N., Day, B. N., Lai, L., Prather, R. S., Sharpe-Timms, L. L., Zimmer, R., and Sutovsky, M. (2005). Expression and proteasomal degradation of the major vault protein (MVP) in mammalian oocytes and zygotes. Reproduction 129, 269–282.
CrossRef | CAS | CAS | PubMed |

Takebayashi, Y., Nakayama, K., Fujioka, T., Kanzaki, A., Mutho, M., Uchida, T., Miyazaki, K., Ito, M., and Fukumoto, M. (2001). Expression of multidrug resistance associated transporters (MDR1, MRP1, LRP and BCRP) in porcine oocyte. Int. J. Mol. Med. 7, 397–400.
| CAS |
| CAS | PubMed |

Tian, X., Isamiddinova, N. S., Peroutka, R. J., Goldenberg, S. J., Mattern, M. R., Nicholson, B., and Leach, C. (2011). Characterization of selective ubiquitin and ubiquitin-like protease inhibitors using a fluorescence-based multiplex assay format. Assay Drug Dev. Technol. 9, 165–173.
CrossRef | CAS | CAS | PubMed |

Tong, Z. B., Gold, L., Pfeifer, K. E., Dorward, H., Lee, E., Bondy, C. A., Dean, J., and Nelson, L. M. (2000). Mater, a maternal effect gene required for early embryonic development in mice. Nat. Genet. 26, 267–268.
CrossRef | CAS | CAS | PubMed |

van Wijk, S. J., Fiskin, E., Putyrski, M., Pampaloni, F., Hou, J., Wild, P., Kensche, T., Grecco, H. E., Bastiaens, P., and Dikic, I. (2012). Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Mol. Cell 47, 797–809.
CrossRef | CAS | CAS | PubMed |

Wada, H., Kito, K., Caskey, L. S., Yeh, E. T., and Kamitani, T. (1998). Cleavage of the C-terminus of NEDD8 by UCH-L3. Biochem. Biophys. Res. Commun. 251, 688–692.
CrossRef | CAS | CAS | PubMed |

Wilkinson, K. D. (1997). Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11, 1245–1256.
| CAS |
| CAS | PubMed |

Wilkinson, K. D. (2000). Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin. Cell Dev. Biol. 11, 141–148.
CrossRef | CAS | CAS | PubMed |

Wilkinson, K. D., Lee, K. M., Deshpande, S., Duerksen-Hughes, P., Boss, J. M., and Pohl, J. (1989). The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 246, 670–673.
CrossRef | CAS | CAS | PubMed |

Wilkinson, K. D., Deshpande, S., and Larsen, C. N. (1992). Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases. Biochem. Soc. Trans. 20, 631–637.
| CAS |
| CAS | PubMed |

Wójcik, C. (2002). Regulation of apoptosis by the ubiquitin and proteasome pathway. J. Cell. Mol. Med. 6, 25–48.
CrossRef | PubMed |

Wójcik, C., Schroeter, D., Wilk, S., Lamprecht, J., and Paweletz, N. (1996). Ubiquitin-mediated proteolysis centers in HeLa cells: indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome. Eur. J. Cell Biol. 71, 311–318.
| PubMed |

Yi, Y. J., Manandhar, G., Sutovsky, M., Li, R., Jonakova, V., Oko, R., Park, C. S., Prather, R. S., and Sutovsky, P. (2007). Ubiquitin C-terminal hydrolase-activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization. Biol. Reprod. 77, 780–793.
CrossRef | CAS | CAS | PubMed |

Yi, Y. J., Nagyova, E., Manandhar, G., Prochazka, R., Sutovsky, M., Park, C. S., and Sutovsky, P. (2008). Proteolytic activity of the 26S proteasome is required for the meiotic resumption, germinal vesicle breakdown, and cumulus expansion of porcine cumulus–oocyte complexes matured in vitro. Biol. Reprod. 78, 115–126.
CrossRef | CAS | CAS | PubMed |

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M., and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
CrossRef | CAS | PubMed |

Zhang, N., Wilkinson, K., and Bownes, M. (1993). Cloning and analysis of expression of a ubiquitin carboxyl terminal hydrolase expressed during oogenesis in Drosophila melanogaster. Dev. Biol. 157, 214–223.
CrossRef | CAS | CAS | PubMed | PubMed |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014